支持人口分布建模的全球网格化多时相数据集。

Gates Open Research Pub Date : 2025-09-15 eCollection Date: 2025-01-01 DOI:10.12688/gatesopenres.16363.1
Dorothea Woods, Tom McKeen, Alexander Cunningham, Rhorom Priyatikanto, Andrew J Tatem, Alessandro Sorichetta, Maksym Bondarenko
{"title":"支持人口分布建模的全球网格化多时相数据集。","authors":"Dorothea Woods, Tom McKeen, Alexander Cunningham, Rhorom Priyatikanto, Andrew J Tatem, Alessandro Sorichetta, Maksym Bondarenko","doi":"10.12688/gatesopenres.16363.1","DOIUrl":null,"url":null,"abstract":"<p><p>Population distributions across countries and regions exhibit significant spatial and temporal variability. This variation highlights the need for high-resolution, small-area demographic data to address the challenges posed by shifting population dynamics, urbanization, and migration. Small area population modelling, particularly the production of gridded population estimates, has advanced rapidly over the past decade. Gridded population estimates rely heavily on the availability of detailed geospatial ancillary datasets to capture, inform and explain the variabilities in population densities and distributions at small area scales, enabling the disaggregation from areal unit-based counts. Here we describe an extensive geospatial collection of annual, high resolution, spatio-temporally harmonised, global datasets aimed at driving improvements in mapping small area population density variation. This article presents the spatio-temporal harmonisation process that results in an open access repository of 73 individual gridded datasets addressing topography, climate, nighttime lights, land cover, inland water, infrastructure, protected areas as well as the built-up environment on a global level at a spatial resolution of 3 arc-seconds (approximately 100 metres). Datasets are available as annual time series from 2015 up to and including at least 2020, and as recent as 2023 where source datasets allow. Such datasets not only support population modelling but also applications across environmental, economic, and health sectors, supporting informed policy-making and resource allocation for sustainable development.</p>","PeriodicalId":12593,"journal":{"name":"Gates Open Research","volume":"9 ","pages":"72"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12444015/pdf/","citationCount":"0","resultStr":"{\"title\":\"Global gridded multi-temporal datasets to support human population distribution modelling.\",\"authors\":\"Dorothea Woods, Tom McKeen, Alexander Cunningham, Rhorom Priyatikanto, Andrew J Tatem, Alessandro Sorichetta, Maksym Bondarenko\",\"doi\":\"10.12688/gatesopenres.16363.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Population distributions across countries and regions exhibit significant spatial and temporal variability. This variation highlights the need for high-resolution, small-area demographic data to address the challenges posed by shifting population dynamics, urbanization, and migration. Small area population modelling, particularly the production of gridded population estimates, has advanced rapidly over the past decade. Gridded population estimates rely heavily on the availability of detailed geospatial ancillary datasets to capture, inform and explain the variabilities in population densities and distributions at small area scales, enabling the disaggregation from areal unit-based counts. Here we describe an extensive geospatial collection of annual, high resolution, spatio-temporally harmonised, global datasets aimed at driving improvements in mapping small area population density variation. This article presents the spatio-temporal harmonisation process that results in an open access repository of 73 individual gridded datasets addressing topography, climate, nighttime lights, land cover, inland water, infrastructure, protected areas as well as the built-up environment on a global level at a spatial resolution of 3 arc-seconds (approximately 100 metres). Datasets are available as annual time series from 2015 up to and including at least 2020, and as recent as 2023 where source datasets allow. Such datasets not only support population modelling but also applications across environmental, economic, and health sectors, supporting informed policy-making and resource allocation for sustainable development.</p>\",\"PeriodicalId\":12593,\"journal\":{\"name\":\"Gates Open Research\",\"volume\":\"9 \",\"pages\":\"72\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12444015/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gates Open Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12688/gatesopenres.16363.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gates Open Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/gatesopenres.16363.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不同国家和地区的人口分布表现出显著的时空变异性。这种差异凸显了对高分辨率、小区域人口数据的需求,以应对人口动态变化、城市化和移民带来的挑战。小区域人口模型,特别是网格化人口估计的制作,在过去十年中取得了迅速进展。网格化人口估计在很大程度上依赖于详细的地理空间辅助数据集的可用性,以捕获、告知和解释小面积尺度上人口密度和分布的变化,从而能够从基于面积单位的计数中分离出来。在这里,我们描述了一个广泛的年度、高分辨率、时空协调的全球数据集的地理空间收集,旨在推动小区域人口密度变化制图的改进。本文介绍了时空协调过程,该过程产生了73个独立网格数据集的开放访问存储库,这些数据集以3角秒(约100米)的空间分辨率在全球范围内处理地形、气候、夜间灯光、土地覆盖、内陆水域、基础设施、保护区以及建筑环境。数据集以年度时间序列形式提供,从2015年到至少包括2020年,以及在源数据集允许的情况下,最近的时间序列为2023年。这些数据集不仅支持人口建模,而且支持在环境、经济和卫生部门的应用,支持明智的决策和资源分配,以促进可持续发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global gridded multi-temporal datasets to support human population distribution modelling.

Population distributions across countries and regions exhibit significant spatial and temporal variability. This variation highlights the need for high-resolution, small-area demographic data to address the challenges posed by shifting population dynamics, urbanization, and migration. Small area population modelling, particularly the production of gridded population estimates, has advanced rapidly over the past decade. Gridded population estimates rely heavily on the availability of detailed geospatial ancillary datasets to capture, inform and explain the variabilities in population densities and distributions at small area scales, enabling the disaggregation from areal unit-based counts. Here we describe an extensive geospatial collection of annual, high resolution, spatio-temporally harmonised, global datasets aimed at driving improvements in mapping small area population density variation. This article presents the spatio-temporal harmonisation process that results in an open access repository of 73 individual gridded datasets addressing topography, climate, nighttime lights, land cover, inland water, infrastructure, protected areas as well as the built-up environment on a global level at a spatial resolution of 3 arc-seconds (approximately 100 metres). Datasets are available as annual time series from 2015 up to and including at least 2020, and as recent as 2023 where source datasets allow. Such datasets not only support population modelling but also applications across environmental, economic, and health sectors, supporting informed policy-making and resource allocation for sustainable development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gates Open Research
Gates Open Research Immunology and Microbiology-Immunology and Microbiology (miscellaneous)
CiteScore
3.60
自引率
0.00%
发文量
90
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信