利用肿瘤进化中的功能选择:系统水平的癌症治疗。

IF 2.1 3区 医学 Q2 EVOLUTIONARY BIOLOGY
Evolution, Medicine, and Public Health Pub Date : 2025-08-18 eCollection Date: 2025-01-01 DOI:10.1093/emph/eoaf022
Frédéric Thomas, Jean-Pascal Capp, Antoine M Dujon, Andriy Marusyk, Klara Asselin, Mario Campone, Pascal Pujol, Catherine Alix-Panabières, Benjamin Roche, Beata Ujvari, Robert Gatenby, Aurora M Nedelcu
{"title":"利用肿瘤进化中的功能选择:系统水平的癌症治疗。","authors":"Frédéric Thomas, Jean-Pascal Capp, Antoine M Dujon, Andriy Marusyk, Klara Asselin, Mario Campone, Pascal Pujol, Catherine Alix-Panabières, Benjamin Roche, Beata Ujvari, Robert Gatenby, Aurora M Nedelcu","doi":"10.1093/emph/eoaf022","DOIUrl":null,"url":null,"abstract":"<p><p>Current cancer therapies often fail due to tumor heterogeneity and rapid resistance evolution. A new evolutionary framework, 'selection for function,' proposes that tumor progression is driven by group phenotypic composition (GPC) and its interaction with the microenvironment, not by individual cell traits. This perspective opens new therapeutic avenues: targeting the tumor's functional networks rather than individual cells. Real-time tracking of GPC changes could inform adaptive treatments, delaying progression and resistance. By integrating evolutionary and ecological principles with conventional therapies, this strategy aims to transform cancer from a fatal to a manageable chronic disease. Crucially, it does not necessarily require new drugs but offers a way to repurpose existing therapies to impair a tumor's evolutionary potential. By steering tumor evolution toward less aggressive states, this approach could improve prognosis and long-term patient survival compared to current methods. We argue that leveraging GPC dynamics represents a critical, yet underexplored, opportunity in oncology.</p>","PeriodicalId":12156,"journal":{"name":"Evolution, Medicine, and Public Health","volume":"13 1","pages":"248-268"},"PeriodicalIF":2.1000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448390/pdf/","citationCount":"0","resultStr":"{\"title\":\"Leveraging selection for function in tumor evolution: System-level cancer therapies.\",\"authors\":\"Frédéric Thomas, Jean-Pascal Capp, Antoine M Dujon, Andriy Marusyk, Klara Asselin, Mario Campone, Pascal Pujol, Catherine Alix-Panabières, Benjamin Roche, Beata Ujvari, Robert Gatenby, Aurora M Nedelcu\",\"doi\":\"10.1093/emph/eoaf022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Current cancer therapies often fail due to tumor heterogeneity and rapid resistance evolution. A new evolutionary framework, 'selection for function,' proposes that tumor progression is driven by group phenotypic composition (GPC) and its interaction with the microenvironment, not by individual cell traits. This perspective opens new therapeutic avenues: targeting the tumor's functional networks rather than individual cells. Real-time tracking of GPC changes could inform adaptive treatments, delaying progression and resistance. By integrating evolutionary and ecological principles with conventional therapies, this strategy aims to transform cancer from a fatal to a manageable chronic disease. Crucially, it does not necessarily require new drugs but offers a way to repurpose existing therapies to impair a tumor's evolutionary potential. By steering tumor evolution toward less aggressive states, this approach could improve prognosis and long-term patient survival compared to current methods. We argue that leveraging GPC dynamics represents a critical, yet underexplored, opportunity in oncology.</p>\",\"PeriodicalId\":12156,\"journal\":{\"name\":\"Evolution, Medicine, and Public Health\",\"volume\":\"13 1\",\"pages\":\"248-268\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448390/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution, Medicine, and Public Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/emph/eoaf022\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution, Medicine, and Public Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/emph/eoaf022","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于肿瘤的异质性和快速的耐药性演变,目前的癌症治疗经常失败。一个新的进化框架“功能选择”提出,肿瘤的进展是由群体表型组成(GPC)及其与微环境的相互作用驱动的,而不是由单个细胞特征驱动的。这一观点开辟了新的治疗途径:针对肿瘤的功能网络而不是单个细胞。实时跟踪GPC变化可以为适应性治疗提供信息,延缓进展和耐药性。通过将进化和生态原理与传统疗法相结合,该策略旨在将癌症从致命疾病转变为可控制的慢性疾病。至关重要的是,它并不一定需要新的药物,而是提供了一种重新利用现有疗法来削弱肿瘤进化潜力的方法。通过引导肿瘤向侵袭性较低的状态发展,与目前的方法相比,这种方法可以改善预后和长期患者生存。我们认为,利用GPC动态代表了肿瘤学中一个关键的,但尚未充分开发的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Leveraging selection for function in tumor evolution: System-level cancer therapies.

Leveraging selection for function in tumor evolution: System-level cancer therapies.

Leveraging selection for function in tumor evolution: System-level cancer therapies.

Leveraging selection for function in tumor evolution: System-level cancer therapies.

Current cancer therapies often fail due to tumor heterogeneity and rapid resistance evolution. A new evolutionary framework, 'selection for function,' proposes that tumor progression is driven by group phenotypic composition (GPC) and its interaction with the microenvironment, not by individual cell traits. This perspective opens new therapeutic avenues: targeting the tumor's functional networks rather than individual cells. Real-time tracking of GPC changes could inform adaptive treatments, delaying progression and resistance. By integrating evolutionary and ecological principles with conventional therapies, this strategy aims to transform cancer from a fatal to a manageable chronic disease. Crucially, it does not necessarily require new drugs but offers a way to repurpose existing therapies to impair a tumor's evolutionary potential. By steering tumor evolution toward less aggressive states, this approach could improve prognosis and long-term patient survival compared to current methods. We argue that leveraging GPC dynamics represents a critical, yet underexplored, opportunity in oncology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolution, Medicine, and Public Health
Evolution, Medicine, and Public Health Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
5.40
自引率
2.70%
发文量
37
审稿时长
8 weeks
期刊介绍: About the Journal Founded by Stephen Stearns in 2013, Evolution, Medicine, and Public Health is an open access journal that publishes original, rigorous applications of evolutionary science to issues in medicine and public health. It aims to connect evolutionary biology with the health sciences to produce insights that may reduce suffering and save lives. Because evolutionary biology is a basic science that reaches across many disciplines, this journal is open to contributions on a broad range of topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信