通过硅基液晶凝胶疏水相互作用的流变特性裁剪。

IF 2.2 3区 化学 Q3 CHEMISTRY, PHYSICAL
S Sumana, Pratyasha Chakrabortty, Subash Cherumannil Karumuthil, S Krishna Prasad, Bhagavatula L V Prasad
{"title":"通过硅基液晶凝胶疏水相互作用的流变特性裁剪。","authors":"S Sumana, Pratyasha Chakrabortty, Subash Cherumannil Karumuthil, S Krishna Prasad, Bhagavatula L V Prasad","doi":"10.1002/cphc.202500123","DOIUrl":null,"url":null,"abstract":"<p><p>Modification of the intrinsic hydrophilic character of the pristine silica nanoparticles (SiNP) decorated with silanol moieties into a hydrophobic state has been of substantial interest, owing to the amenability to gelation of desirable liquids. Many reports exist on composites of SiNP with liquid crystals (LCs), an epitome of anisotropic soft matter. The fumed SiNP, unlike its precipitated counterpart, has been the preferred variety. A family of colloidal gel systems is reported, consisting of precipitated SiNP in a nematic LC, formed by substituting some native silanols with methyl, butyl, or dodecane chains. Detailed steady state and oscillatory rheological measurements are performed, along with analyses using the soft glass and other viscoelastic models. The study demonstrates that the sophisticated modified fractional models, Kelvin-Voight and Maxwell, proposed for generalized viscoelastic behavior of soft materials, are quite successful in describing these nematic gels as well. The observed nontrivial relationship between the ligand length and the strength of the gel network is elucidated on the basis of a judicious combination of the van der Waals, hydrogen bonding, and hydrophobic interactions, leading to a detailed understanding of the viscoelastic behavior of the composites and the influence of SiNP surface chemistry.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202500123"},"PeriodicalIF":2.2000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring of Rheological Properties through Hydrophobic Interactions in Silica-Based Liquid Crystal Gels.\",\"authors\":\"S Sumana, Pratyasha Chakrabortty, Subash Cherumannil Karumuthil, S Krishna Prasad, Bhagavatula L V Prasad\",\"doi\":\"10.1002/cphc.202500123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modification of the intrinsic hydrophilic character of the pristine silica nanoparticles (SiNP) decorated with silanol moieties into a hydrophobic state has been of substantial interest, owing to the amenability to gelation of desirable liquids. Many reports exist on composites of SiNP with liquid crystals (LCs), an epitome of anisotropic soft matter. The fumed SiNP, unlike its precipitated counterpart, has been the preferred variety. A family of colloidal gel systems is reported, consisting of precipitated SiNP in a nematic LC, formed by substituting some native silanols with methyl, butyl, or dodecane chains. Detailed steady state and oscillatory rheological measurements are performed, along with analyses using the soft glass and other viscoelastic models. The study demonstrates that the sophisticated modified fractional models, Kelvin-Voight and Maxwell, proposed for generalized viscoelastic behavior of soft materials, are quite successful in describing these nematic gels as well. The observed nontrivial relationship between the ligand length and the strength of the gel network is elucidated on the basis of a judicious combination of the van der Waals, hydrogen bonding, and hydrophobic interactions, leading to a detailed understanding of the viscoelastic behavior of the composites and the influence of SiNP surface chemistry.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e202500123\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202500123\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202500123","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

用硅醇修饰的原始二氧化硅纳米颗粒(SiNP)的固有亲水性被修饰成疏水状态,这是一个非常有趣的问题,因为它易于被理想的液体凝胶化。液晶(lc)是软物质各向异性的一个缩影。气相SiNP,不像沉淀物,一直是首选的品种。报道了一类胶体凝胶体系,由向列相LC中沉淀的SiNP组成,由甲基、丁基或十二烷链取代一些天然硅烷醇形成。进行了详细的稳态和振荡流变测量,以及使用软玻璃和其他粘弹性模型的分析。研究表明,针对软质材料广义粘弹性行为提出的复杂修正分数模型Kelvin-Voight和Maxwell,在描述这些向列相凝胶方面也相当成功。观察到的配体长度与凝胶网络强度之间的重要关系是在范德华、氢键和疏水相互作用的明智组合的基础上阐明的,从而详细了解复合材料的粘弹性行为和SiNP表面化学的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tailoring of Rheological Properties through Hydrophobic Interactions in Silica-Based Liquid Crystal Gels.

Modification of the intrinsic hydrophilic character of the pristine silica nanoparticles (SiNP) decorated with silanol moieties into a hydrophobic state has been of substantial interest, owing to the amenability to gelation of desirable liquids. Many reports exist on composites of SiNP with liquid crystals (LCs), an epitome of anisotropic soft matter. The fumed SiNP, unlike its precipitated counterpart, has been the preferred variety. A family of colloidal gel systems is reported, consisting of precipitated SiNP in a nematic LC, formed by substituting some native silanols with methyl, butyl, or dodecane chains. Detailed steady state and oscillatory rheological measurements are performed, along with analyses using the soft glass and other viscoelastic models. The study demonstrates that the sophisticated modified fractional models, Kelvin-Voight and Maxwell, proposed for generalized viscoelastic behavior of soft materials, are quite successful in describing these nematic gels as well. The observed nontrivial relationship between the ligand length and the strength of the gel network is elucidated on the basis of a judicious combination of the van der Waals, hydrogen bonding, and hydrophobic interactions, leading to a detailed understanding of the viscoelastic behavior of the composites and the influence of SiNP surface chemistry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信