Song Chen, Zhijian Huang, Yucheng Wang, Yahan Li, Yaw Sing Tan, Lei Deng, Min Wu
{"title":"MVRBind:多视角学习rna -小分子结合位点预测。","authors":"Song Chen, Zhijian Huang, Yucheng Wang, Yahan Li, Yaw Sing Tan, Lei Deng, Min Wu","doi":"10.1093/bib/bbaf489","DOIUrl":null,"url":null,"abstract":"<p><p>RNA plays a critical role in cellular processes, and its dysregulation is linked to many diseases, positioning RNA-targeted drugs as an important area of research. Accurate prediction of RNA-small molecule binding sites is crucial for advancing RNA-targeted therapies. Although deep learning has shown promise in this area, challenges remain in integrating and processing multi-dimensional data, such as RNA sequences and structural features, particularly given the inherent flexibility of RNA structures. In this study, we present MVRBind, a multi-view graph convolutional network designed to predict RNA-small molecule binding sites. MVRBind generates feature representations of RNA nucleotides across different structural levels. To effectively integrate these features, we developed a multi-view feature fusion module that constructs graphs based on RNA's primary, secondary, and tertiary structural views, enabling the model to capture diverse aspects of RNA structure. In addition, we fuse embeddings from multi-scale to obtain a comprehensive representation of RNA nucleotides, which is then used to predict RNA-small molecule binding sites. Extensive experiments demonstrate that MVRBind consistently outperforms baseline methods in various experimental settings. Our MVRBind shows exceptional performance in predicting binding sites for both the holo and apo forms of RNA, even when RNA adopts multiple conformations. These results suggest that MVRBind offers a robust model for structure-based RNA analysis, contributing toward accurate prediction and analysis of RNA-small molecule binding sites. All datasets and resource codes are available at https://github.com/cschen-y/MVRBind.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 5","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12451103/pdf/","citationCount":"0","resultStr":"{\"title\":\"MVRBind: multi-view learning for RNA-small molecule binding site prediction.\",\"authors\":\"Song Chen, Zhijian Huang, Yucheng Wang, Yahan Li, Yaw Sing Tan, Lei Deng, Min Wu\",\"doi\":\"10.1093/bib/bbaf489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RNA plays a critical role in cellular processes, and its dysregulation is linked to many diseases, positioning RNA-targeted drugs as an important area of research. Accurate prediction of RNA-small molecule binding sites is crucial for advancing RNA-targeted therapies. Although deep learning has shown promise in this area, challenges remain in integrating and processing multi-dimensional data, such as RNA sequences and structural features, particularly given the inherent flexibility of RNA structures. In this study, we present MVRBind, a multi-view graph convolutional network designed to predict RNA-small molecule binding sites. MVRBind generates feature representations of RNA nucleotides across different structural levels. To effectively integrate these features, we developed a multi-view feature fusion module that constructs graphs based on RNA's primary, secondary, and tertiary structural views, enabling the model to capture diverse aspects of RNA structure. In addition, we fuse embeddings from multi-scale to obtain a comprehensive representation of RNA nucleotides, which is then used to predict RNA-small molecule binding sites. Extensive experiments demonstrate that MVRBind consistently outperforms baseline methods in various experimental settings. Our MVRBind shows exceptional performance in predicting binding sites for both the holo and apo forms of RNA, even when RNA adopts multiple conformations. These results suggest that MVRBind offers a robust model for structure-based RNA analysis, contributing toward accurate prediction and analysis of RNA-small molecule binding sites. All datasets and resource codes are available at https://github.com/cschen-y/MVRBind.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 5\",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12451103/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf489\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf489","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
MVRBind: multi-view learning for RNA-small molecule binding site prediction.
RNA plays a critical role in cellular processes, and its dysregulation is linked to many diseases, positioning RNA-targeted drugs as an important area of research. Accurate prediction of RNA-small molecule binding sites is crucial for advancing RNA-targeted therapies. Although deep learning has shown promise in this area, challenges remain in integrating and processing multi-dimensional data, such as RNA sequences and structural features, particularly given the inherent flexibility of RNA structures. In this study, we present MVRBind, a multi-view graph convolutional network designed to predict RNA-small molecule binding sites. MVRBind generates feature representations of RNA nucleotides across different structural levels. To effectively integrate these features, we developed a multi-view feature fusion module that constructs graphs based on RNA's primary, secondary, and tertiary structural views, enabling the model to capture diverse aspects of RNA structure. In addition, we fuse embeddings from multi-scale to obtain a comprehensive representation of RNA nucleotides, which is then used to predict RNA-small molecule binding sites. Extensive experiments demonstrate that MVRBind consistently outperforms baseline methods in various experimental settings. Our MVRBind shows exceptional performance in predicting binding sites for both the holo and apo forms of RNA, even when RNA adopts multiple conformations. These results suggest that MVRBind offers a robust model for structure-based RNA analysis, contributing toward accurate prediction and analysis of RNA-small molecule binding sites. All datasets and resource codes are available at https://github.com/cschen-y/MVRBind.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.