Tingting Dang , Yiqing You , Lan Wei , Qian Li , Haoli Sun , MengXin Sun , Xiaolu Li , Shiyu Yang , Tao Zeng , Liang Zhang , Xiran He , Ke Wang , Jiafeng Tang , Yan Zhang
{"title":"ICAT通过c-Myc-ENO1轴驱动肿瘤相关巨噬细胞的乳酸化,从而促进宫颈癌的进展。","authors":"Tingting Dang , Yiqing You , Lan Wei , Qian Li , Haoli Sun , MengXin Sun , Xiaolu Li , Shiyu Yang , Tao Zeng , Liang Zhang , Xiran He , Ke Wang , Jiafeng Tang , Yan Zhang","doi":"10.1016/j.freeradbiomed.2025.09.031","DOIUrl":null,"url":null,"abstract":"<div><div>The effectiveness of immunotherapy in cervical cancer (CC) is profoundly influenced by the tumor microenvironment (TME), where a high infiltration of M2-type tumor-associated macrophages (TAMs) correlates with poor therapeutic responses. Therefore, understanding the molecular mechanisms driving M2-type TAM polarization and identifying novel therapeutic targets are essential for enhancing immunotherapy outcomes in CC. In this study, ICAT was revealed to be significantly upregulated in CC, correlating with poor prognosis. Mechanistically, ICAT facilitated the nuclear translocation of c-Myc, enhancing ENO1 transcription, thereby promoting glycolytic activity and lactate accumulation in the TME. Tumor-derived lactate induced H3K18 lactylation in TAMs, which in turn activated ARG1 expression, driving M2 polarization and establishing an immunosuppressive microenvironment that supports immune evasion. In summary, this study demonstrates that ICAT, by regulating the c-Myc-ENO1 axis, mediates the interaction between tumor cells and macrophages, thereby reshaping the TME and promoting the migration, invasion, and glycolysis of CC. These findings demonstrate that ICAT represents a potential therapeutic target for the treatment of CC.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":"241 ","pages":"Pages 316-329"},"PeriodicalIF":8.2000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ICAT drives lactylation of tumor-associated macrophages via the c-Myc-ENO1 axis to promote cervical cancer progression\",\"authors\":\"Tingting Dang , Yiqing You , Lan Wei , Qian Li , Haoli Sun , MengXin Sun , Xiaolu Li , Shiyu Yang , Tao Zeng , Liang Zhang , Xiran He , Ke Wang , Jiafeng Tang , Yan Zhang\",\"doi\":\"10.1016/j.freeradbiomed.2025.09.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The effectiveness of immunotherapy in cervical cancer (CC) is profoundly influenced by the tumor microenvironment (TME), where a high infiltration of M2-type tumor-associated macrophages (TAMs) correlates with poor therapeutic responses. Therefore, understanding the molecular mechanisms driving M2-type TAM polarization and identifying novel therapeutic targets are essential for enhancing immunotherapy outcomes in CC. In this study, ICAT was revealed to be significantly upregulated in CC, correlating with poor prognosis. Mechanistically, ICAT facilitated the nuclear translocation of c-Myc, enhancing ENO1 transcription, thereby promoting glycolytic activity and lactate accumulation in the TME. Tumor-derived lactate induced H3K18 lactylation in TAMs, which in turn activated ARG1 expression, driving M2 polarization and establishing an immunosuppressive microenvironment that supports immune evasion. In summary, this study demonstrates that ICAT, by regulating the c-Myc-ENO1 axis, mediates the interaction between tumor cells and macrophages, thereby reshaping the TME and promoting the migration, invasion, and glycolysis of CC. These findings demonstrate that ICAT represents a potential therapeutic target for the treatment of CC.</div></div>\",\"PeriodicalId\":12407,\"journal\":{\"name\":\"Free Radical Biology and Medicine\",\"volume\":\"241 \",\"pages\":\"Pages 316-329\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0891584925009888\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891584925009888","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
ICAT drives lactylation of tumor-associated macrophages via the c-Myc-ENO1 axis to promote cervical cancer progression
The effectiveness of immunotherapy in cervical cancer (CC) is profoundly influenced by the tumor microenvironment (TME), where a high infiltration of M2-type tumor-associated macrophages (TAMs) correlates with poor therapeutic responses. Therefore, understanding the molecular mechanisms driving M2-type TAM polarization and identifying novel therapeutic targets are essential for enhancing immunotherapy outcomes in CC. In this study, ICAT was revealed to be significantly upregulated in CC, correlating with poor prognosis. Mechanistically, ICAT facilitated the nuclear translocation of c-Myc, enhancing ENO1 transcription, thereby promoting glycolytic activity and lactate accumulation in the TME. Tumor-derived lactate induced H3K18 lactylation in TAMs, which in turn activated ARG1 expression, driving M2 polarization and establishing an immunosuppressive microenvironment that supports immune evasion. In summary, this study demonstrates that ICAT, by regulating the c-Myc-ENO1 axis, mediates the interaction between tumor cells and macrophages, thereby reshaping the TME and promoting the migration, invasion, and glycolysis of CC. These findings demonstrate that ICAT represents a potential therapeutic target for the treatment of CC.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.