质子耦合电子转移脱氧吡啶n-氧化物的机理研究。

IF 2.2 3区 化学 Q3 CHEMISTRY, PHYSICAL
Céline Naddour, Gabriel Durin, Sylvie Chardon-Noblat, Cyrille Costentin
{"title":"质子耦合电子转移脱氧吡啶n-氧化物的机理研究。","authors":"Céline Naddour, Gabriel Durin, Sylvie Chardon-Noblat, Cyrille Costentin","doi":"10.1002/cphc.202500292","DOIUrl":null,"url":null,"abstract":"<p><p>Electrochemical reductive deoxygenation of pyridine N-oxide is investigated with particular focus on the role of proton-coupled electron transfers. A detailed analysis of cyclic voltammograms reveals that the initial electron transfer is followed by protonation of the pyridine N-oxide anion radical. Kinetic analysis reveals an unusual fifth-order dependence on the concentration of the proton donor (either water or ethanol), suggesting the involvement of a proton donor cluster in the protonation step. The resulting neutral radical represents a key bottleneck in the reaction pathway, as it can proceed via either a parent-child coupling reaction or NO bond cleavage, the latter leading to the formation of pyridine. This competition between reaction pathways allows extraction of both the rate constant for the protonation of the N-oxide radical anion and kinetic information related to the reductive NO bond cleavage. The reductive cleavage of the protonated N-oxide radical may proceed via two possible mechanisms: 1) homolytic bond cleavage followed by reduction of the hydroxyl radical, or 2) a concerted dissociative electron transfer. The observed hydrogen-bonding effects, combined with the higher driving force for the concerted pathway, support the latter mechanism, where stabilization of the departing hydroxide ion facilitates the electron transfer.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202500292"},"PeriodicalIF":2.2000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proton-Coupled Electron Transfer Deoxygenation of Pyridine N-Oxide: A Mechanistic Study.\",\"authors\":\"Céline Naddour, Gabriel Durin, Sylvie Chardon-Noblat, Cyrille Costentin\",\"doi\":\"10.1002/cphc.202500292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrochemical reductive deoxygenation of pyridine N-oxide is investigated with particular focus on the role of proton-coupled electron transfers. A detailed analysis of cyclic voltammograms reveals that the initial electron transfer is followed by protonation of the pyridine N-oxide anion radical. Kinetic analysis reveals an unusual fifth-order dependence on the concentration of the proton donor (either water or ethanol), suggesting the involvement of a proton donor cluster in the protonation step. The resulting neutral radical represents a key bottleneck in the reaction pathway, as it can proceed via either a parent-child coupling reaction or NO bond cleavage, the latter leading to the formation of pyridine. This competition between reaction pathways allows extraction of both the rate constant for the protonation of the N-oxide radical anion and kinetic information related to the reductive NO bond cleavage. The reductive cleavage of the protonated N-oxide radical may proceed via two possible mechanisms: 1) homolytic bond cleavage followed by reduction of the hydroxyl radical, or 2) a concerted dissociative electron transfer. The observed hydrogen-bonding effects, combined with the higher driving force for the concerted pathway, support the latter mechanism, where stabilization of the departing hydroxide ion facilitates the electron transfer.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e202500292\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202500292\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202500292","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了吡啶n-氧化物的电化学还原脱氧,重点研究了质子耦合电子转移的作用。循环伏安图的详细分析表明,初始电子转移之后是吡啶n -氧化物阴离子自由基的质子化。动力学分析揭示了质子供体(水或乙醇)浓度对质子化反应的五阶依赖性,表明质子供体簇参与了质子化反应。由此产生的中性自由基是反应途径中的一个关键瓶颈,因为它可以通过亲子偶联反应或N - O键裂解进行,后者导致吡啶的形成。这种反应途径之间的竞争可以同时提取N-氧化物自由基阴离子质子化的速率常数和还原性N- O键裂解的动力学信息。质子化的n -氧化物自由基的还原裂解可能通过两种可能的机制进行:1)均溶键裂解,然后是羟基自由基的还原,或2)协同解离电子转移。观察到的氢键效应,加上协同路径的更高驱动力,支持后一种机制,即离开的氢氧根离子的稳定化促进了电子转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proton-Coupled Electron Transfer Deoxygenation of Pyridine N-Oxide: A Mechanistic Study.

Electrochemical reductive deoxygenation of pyridine N-oxide is investigated with particular focus on the role of proton-coupled electron transfers. A detailed analysis of cyclic voltammograms reveals that the initial electron transfer is followed by protonation of the pyridine N-oxide anion radical. Kinetic analysis reveals an unusual fifth-order dependence on the concentration of the proton donor (either water or ethanol), suggesting the involvement of a proton donor cluster in the protonation step. The resulting neutral radical represents a key bottleneck in the reaction pathway, as it can proceed via either a parent-child coupling reaction or NO bond cleavage, the latter leading to the formation of pyridine. This competition between reaction pathways allows extraction of both the rate constant for the protonation of the N-oxide radical anion and kinetic information related to the reductive NO bond cleavage. The reductive cleavage of the protonated N-oxide radical may proceed via two possible mechanisms: 1) homolytic bond cleavage followed by reduction of the hydroxyl radical, or 2) a concerted dissociative electron transfer. The observed hydrogen-bonding effects, combined with the higher driving force for the concerted pathway, support the latter mechanism, where stabilization of the departing hydroxide ion facilitates the electron transfer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信