深度学习用于药物靶标结合预测的研究综述:模型、基准、评估和案例研究。

IF 7.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Kusal Debnath, Pratip Rana, Preetam Ghosh
{"title":"深度学习用于药物靶标结合预测的研究综述:模型、基准、评估和案例研究。","authors":"Kusal Debnath, Pratip Rana, Preetam Ghosh","doi":"10.1093/bib/bbaf491","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional drug discovery is expensive, time-consuming, and prone to failure. Artificial intelligence has become a potent substitute over the last decade, providing strong answers to challenging biological issues in this field. Among these difficulties, drug-target binding (DTB) is a key component of drug discovery techniques. In this context, drug-target affinity and drug-target interaction are complementary and essential frameworks that work together to improve our comprehension of DTB dynamics. In this work, we thoroughly analyze the most recent deep learning models, popular benchmark datasets, and assessment metrics for DTB prediction. We look at the paradigm shift in the development of drug discovery research since researchers started using deep learning as a potent tool for DTB prediction. In particular, we examine how methodologies have evolved, starting with early heterogeneous network-based approaches, progressing to graph-based approaches that were widely accepted, followed by modern attention-based architectures, and finally, the most recent multimodal approaches. We also provide case studies utilizing an extensive compound library against specific protein targets implicated in critical cancer pathways to demonstrate the usefulness of these approaches. In addition to summarizing the latest developments in DTB prediction models, this review also identifies their drawbacks. It also highlights the outlook for the DTB prediction domain and future research directions. Combined, these studies present a more comprehensive view of how deep learning offers a quantitative framework for researching drug-target relationships, speeding up the identification of new drug candidates and making it easier to identify possible DTBs.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 5","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12451107/pdf/","citationCount":"0","resultStr":"{\"title\":\"A survey on deep learning for drug-target binding prediction: models, benchmarks, evaluation, and case studies.\",\"authors\":\"Kusal Debnath, Pratip Rana, Preetam Ghosh\",\"doi\":\"10.1093/bib/bbaf491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conventional drug discovery is expensive, time-consuming, and prone to failure. Artificial intelligence has become a potent substitute over the last decade, providing strong answers to challenging biological issues in this field. Among these difficulties, drug-target binding (DTB) is a key component of drug discovery techniques. In this context, drug-target affinity and drug-target interaction are complementary and essential frameworks that work together to improve our comprehension of DTB dynamics. In this work, we thoroughly analyze the most recent deep learning models, popular benchmark datasets, and assessment metrics for DTB prediction. We look at the paradigm shift in the development of drug discovery research since researchers started using deep learning as a potent tool for DTB prediction. In particular, we examine how methodologies have evolved, starting with early heterogeneous network-based approaches, progressing to graph-based approaches that were widely accepted, followed by modern attention-based architectures, and finally, the most recent multimodal approaches. We also provide case studies utilizing an extensive compound library against specific protein targets implicated in critical cancer pathways to demonstrate the usefulness of these approaches. In addition to summarizing the latest developments in DTB prediction models, this review also identifies their drawbacks. It also highlights the outlook for the DTB prediction domain and future research directions. Combined, these studies present a more comprehensive view of how deep learning offers a quantitative framework for researching drug-target relationships, speeding up the identification of new drug candidates and making it easier to identify possible DTBs.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 5\",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12451107/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf491\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf491","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

传统的药物发现既昂贵又费时,而且容易失败。在过去的十年里,人工智能已经成为一个强有力的替代品,为这一领域具有挑战性的生物学问题提供了强有力的答案。在这些困难中,药物靶标结合(DTB)是药物发现技术的关键组成部分。在这种情况下,药物-靶标亲和力和药物-靶标相互作用是互补的和必要的框架,共同努力,以提高我们对DTB动力学的理解。在这项工作中,我们深入分析了最新的深度学习模型、流行的基准数据集和用于DTB预测的评估指标。我们着眼于药物发现研究发展中的范式转变,因为研究人员开始使用深度学习作为DTB预测的有力工具。特别是,我们研究了方法论是如何演变的,从早期基于异构网络的方法开始,发展到广泛接受的基于图的方法,然后是现代基于注意力的体系结构,最后是最近的多模态方法。我们还提供了案例研究,利用广泛的化合物文库对抗涉及关键癌症途径的特定蛋白质靶点,以证明这些方法的有效性。除了总结DTB预测模型的最新发展外,本文还指出了它们的缺点。展望了DTB预测领域的发展前景和未来的研究方向。综合起来,这些研究提出了一个更全面的观点,即深度学习如何为研究药物-靶标关系提供定量框架,加速新候选药物的识别,并使其更容易识别可能的dtb。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A survey on deep learning for drug-target binding prediction: models, benchmarks, evaluation, and case studies.

Conventional drug discovery is expensive, time-consuming, and prone to failure. Artificial intelligence has become a potent substitute over the last decade, providing strong answers to challenging biological issues in this field. Among these difficulties, drug-target binding (DTB) is a key component of drug discovery techniques. In this context, drug-target affinity and drug-target interaction are complementary and essential frameworks that work together to improve our comprehension of DTB dynamics. In this work, we thoroughly analyze the most recent deep learning models, popular benchmark datasets, and assessment metrics for DTB prediction. We look at the paradigm shift in the development of drug discovery research since researchers started using deep learning as a potent tool for DTB prediction. In particular, we examine how methodologies have evolved, starting with early heterogeneous network-based approaches, progressing to graph-based approaches that were widely accepted, followed by modern attention-based architectures, and finally, the most recent multimodal approaches. We also provide case studies utilizing an extensive compound library against specific protein targets implicated in critical cancer pathways to demonstrate the usefulness of these approaches. In addition to summarizing the latest developments in DTB prediction models, this review also identifies their drawbacks. It also highlights the outlook for the DTB prediction domain and future research directions. Combined, these studies present a more comprehensive view of how deep learning offers a quantitative framework for researching drug-target relationships, speeding up the identification of new drug candidates and making it easier to identify possible DTBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信