GlucoNet-MM:一个基于多模态注意力的多任务学习框架,带有决策转换器,用于个性化和可解释的血糖预测。

IF 5.7 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Sarmad Maqsood, Muhammad Abdullah Sarwar, Egle Belousovienė, Rytis Maskeliūnas
{"title":"GlucoNet-MM:一个基于多模态注意力的多任务学习框架,带有决策转换器,用于个性化和可解释的血糖预测。","authors":"Sarmad Maqsood, Muhammad Abdullah Sarwar, Egle Belousovienė, Rytis Maskeliūnas","doi":"10.1111/dom.70147","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Accurate and personalized blood glucose prediction is critical for proactive diabetes management. Conventional machine learning (ML) models often struggle to generalize across patients due to individual variability, nonlinear glycemic dynamics, and sparse multimodal input data. This study aims to develop an advanced, interpretable deep learning (DL) framework for patient-specific, policy-aware blood glucose forecasting.</p><p><strong>Materials and methods: </strong>We propose GlucoNet-MM, a novel multimodal DL framework that combines attention-based multi-task learning (MTL) with a Decision Transformer (DT), a reinforcement learning paradigm that frames policy learning as sequence modeling. The model integrates heterogeneous physiological and behavioral data, continuous glucose monitoring (CGM), insulin dosage, carbohydrate intake, and physical activity, to capture complex temporal dependencies. The MTL backbone learns shared representations across multiple prediction horizons, while the DT module conditions future glucose predictions on desired glycemic outcomes. Temporal attention visualizations and integrated gradient-based attribution methods are used to provide interpretability, and Monte Carlo dropout is employed for uncertainty quantification.</p><p><strong>Results: </strong>GlucoNet-MM was evaluated on two publicly available datasets, BrisT1D and OhioT1DM. The model achieved R<sup>2</sup> scores of 0.94 and 0.96 and mean absolute error (MAE) values of 0.031 and 0.027, respectively. These results outperform single-modality and conventional non-adaptive baseline models, demonstrating superior predictive accuracy and generalizability.</p><p><strong>Conclusion: </strong>GlucoNet-MM represents a promising step toward intelligent, personalized clinical decision support for diabetes care. Its multimodal design, policy-aware forecasting, and interpretability features enhance both prediction accuracy and clinical trust, enabling proactive glycemic management tailored to individual patient needs.</p>","PeriodicalId":158,"journal":{"name":"Diabetes, Obesity & Metabolism","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GlucoNet-MM: A multimodal attention-based multi-task learning framework with decision transformer for personalised and explainable blood glucose forecasting.\",\"authors\":\"Sarmad Maqsood, Muhammad Abdullah Sarwar, Egle Belousovienė, Rytis Maskeliūnas\",\"doi\":\"10.1111/dom.70147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Accurate and personalized blood glucose prediction is critical for proactive diabetes management. Conventional machine learning (ML) models often struggle to generalize across patients due to individual variability, nonlinear glycemic dynamics, and sparse multimodal input data. This study aims to develop an advanced, interpretable deep learning (DL) framework for patient-specific, policy-aware blood glucose forecasting.</p><p><strong>Materials and methods: </strong>We propose GlucoNet-MM, a novel multimodal DL framework that combines attention-based multi-task learning (MTL) with a Decision Transformer (DT), a reinforcement learning paradigm that frames policy learning as sequence modeling. The model integrates heterogeneous physiological and behavioral data, continuous glucose monitoring (CGM), insulin dosage, carbohydrate intake, and physical activity, to capture complex temporal dependencies. The MTL backbone learns shared representations across multiple prediction horizons, while the DT module conditions future glucose predictions on desired glycemic outcomes. Temporal attention visualizations and integrated gradient-based attribution methods are used to provide interpretability, and Monte Carlo dropout is employed for uncertainty quantification.</p><p><strong>Results: </strong>GlucoNet-MM was evaluated on two publicly available datasets, BrisT1D and OhioT1DM. The model achieved R<sup>2</sup> scores of 0.94 and 0.96 and mean absolute error (MAE) values of 0.031 and 0.027, respectively. These results outperform single-modality and conventional non-adaptive baseline models, demonstrating superior predictive accuracy and generalizability.</p><p><strong>Conclusion: </strong>GlucoNet-MM represents a promising step toward intelligent, personalized clinical decision support for diabetes care. Its multimodal design, policy-aware forecasting, and interpretability features enhance both prediction accuracy and clinical trust, enabling proactive glycemic management tailored to individual patient needs.</p>\",\"PeriodicalId\":158,\"journal\":{\"name\":\"Diabetes, Obesity & Metabolism\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes, Obesity & Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/dom.70147\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes, Obesity & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/dom.70147","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

目的:准确和个性化的血糖预测对糖尿病的主动管理至关重要。由于个体可变性、非线性血糖动力学和稀疏的多模态输入数据,传统的机器学习(ML)模型往往难以在患者之间进行泛化。本研究旨在开发一种先进的、可解释的深度学习(DL)框架,用于患者特定的、策略感知的血糖预测。材料和方法:我们提出了GlucoNet-MM,这是一个新的多模态深度学习框架,它结合了基于注意力的多任务学习(MTL)和决策转换器(DT),后者是一种强化学习范式,将策略学习框架为序列建模。该模型整合了不同的生理和行为数据、连续血糖监测(CGM)、胰岛素剂量、碳水化合物摄入量和身体活动,以捕捉复杂的时间依赖性。MTL主干学习跨多个预测范围的共享表示,而DT模块根据期望的血糖结果来调整未来的葡萄糖预测。采用时间注意可视化和基于梯度的综合归因方法提供可解释性,并采用蒙特卡罗dropout方法进行不确定性量化。结果:GlucoNet-MM在两个公开可用的数据集BrisT1D和OhioT1DM上进行评估。模型的R2得分分别为0.94和0.96,平均绝对误差(MAE)值分别为0.031和0.027。这些结果优于单模态和传统的非自适应基线模型,显示出优越的预测准确性和通用性。结论:GlucoNet-MM代表了朝着糖尿病护理智能化、个性化临床决策支持迈出的有希望的一步。它的多模式设计、政策感知预测和可解释性特点提高了预测准确性和临床信任度,使主动血糖管理能够根据患者的个人需求进行调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GlucoNet-MM: A multimodal attention-based multi-task learning framework with decision transformer for personalised and explainable blood glucose forecasting.

Aims: Accurate and personalized blood glucose prediction is critical for proactive diabetes management. Conventional machine learning (ML) models often struggle to generalize across patients due to individual variability, nonlinear glycemic dynamics, and sparse multimodal input data. This study aims to develop an advanced, interpretable deep learning (DL) framework for patient-specific, policy-aware blood glucose forecasting.

Materials and methods: We propose GlucoNet-MM, a novel multimodal DL framework that combines attention-based multi-task learning (MTL) with a Decision Transformer (DT), a reinforcement learning paradigm that frames policy learning as sequence modeling. The model integrates heterogeneous physiological and behavioral data, continuous glucose monitoring (CGM), insulin dosage, carbohydrate intake, and physical activity, to capture complex temporal dependencies. The MTL backbone learns shared representations across multiple prediction horizons, while the DT module conditions future glucose predictions on desired glycemic outcomes. Temporal attention visualizations and integrated gradient-based attribution methods are used to provide interpretability, and Monte Carlo dropout is employed for uncertainty quantification.

Results: GlucoNet-MM was evaluated on two publicly available datasets, BrisT1D and OhioT1DM. The model achieved R2 scores of 0.94 and 0.96 and mean absolute error (MAE) values of 0.031 and 0.027, respectively. These results outperform single-modality and conventional non-adaptive baseline models, demonstrating superior predictive accuracy and generalizability.

Conclusion: GlucoNet-MM represents a promising step toward intelligent, personalized clinical decision support for diabetes care. Its multimodal design, policy-aware forecasting, and interpretability features enhance both prediction accuracy and clinical trust, enabling proactive glycemic management tailored to individual patient needs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diabetes, Obesity & Metabolism
Diabetes, Obesity & Metabolism 医学-内分泌学与代谢
CiteScore
10.90
自引率
6.90%
发文量
319
审稿时长
3-8 weeks
期刊介绍: Diabetes, Obesity and Metabolism is primarily a journal of clinical and experimental pharmacology and therapeutics covering the interrelated areas of diabetes, obesity and metabolism. The journal prioritises high-quality original research that reports on the effects of new or existing therapies, including dietary, exercise and lifestyle (non-pharmacological) interventions, in any aspect of metabolic and endocrine disease, either in humans or animal and cellular systems. ‘Metabolism’ may relate to lipids, bone and drug metabolism, or broader aspects of endocrine dysfunction. Preclinical pharmacology, pharmacokinetic studies, meta-analyses and those addressing drug safety and tolerability are also highly suitable for publication in this journal. Original research may be published as a main paper or as a research letter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信