具有优异加工性能和光学功能的寡聚化诱导超分子玻璃

IF 7.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zixuan Liu, Lin Wang, Yang Yang, Peng Meng, Xiaodong Wang, Hang Meng, Dongchen Qi, Hongxia Wang, Xiaofeng Liu, Jingsan Xu
{"title":"具有优异加工性能和光学功能的寡聚化诱导超分子玻璃","authors":"Zixuan Liu,&nbsp;Lin Wang,&nbsp;Yang Yang,&nbsp;Peng Meng,&nbsp;Xiaodong Wang,&nbsp;Hang Meng,&nbsp;Dongchen Qi,&nbsp;Hongxia Wang,&nbsp;Xiaofeng Liu,&nbsp;Jingsan Xu","doi":"10.1002/adom.202501259","DOIUrl":null,"url":null,"abstract":"<p>The fabrication of glasses, including silicate glasses, polymers, and amorphous metals, typically relies on the melting-quenching technique. However, this approach faces significant challenges when applied to recently emerging molecular glasses due to the inherent thermal instability of small molecules. Herein, the discovery of a new supramolecular glass (BGG) is presented, formed by a unique melting-quenching method that leverages unusual chemistry pathways. By manipulating the heating of a small molecule (benzoguanamine, BG), catalyst-free self-condensation reactions occur and produce multiple oligomers in a liquid state. The resulting high compositional and conformational entropy suppresses crystallization, allowing solidification into a rigid supramolecular glass under robust conditions. Despite being composed of low-weight molecules, the extensive intermolecular interactions endow BGG with distinct aggregation-induced emission (AIE, quantum yield up to 60%), polymer-like Young's modulus (7.95 GPa), and superior glass transition temperature (100.1 °C). BGG's excellent processability is exemplified by the fabrication of thin films and fibers, showcasing potential applications in photovoltaics and photonic waveguides. BGG also serves as a platform for synthesizing diverse donor-acceptor hybrids with &gt; 95% energy transfer efficiency, enabling the creation of advanced materials with customizable functionalities.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 27","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202501259","citationCount":"0","resultStr":"{\"title\":\"Oligomerization-Induced Supramolecular Glass with Superior Processability and Optical Functions\",\"authors\":\"Zixuan Liu,&nbsp;Lin Wang,&nbsp;Yang Yang,&nbsp;Peng Meng,&nbsp;Xiaodong Wang,&nbsp;Hang Meng,&nbsp;Dongchen Qi,&nbsp;Hongxia Wang,&nbsp;Xiaofeng Liu,&nbsp;Jingsan Xu\",\"doi\":\"10.1002/adom.202501259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The fabrication of glasses, including silicate glasses, polymers, and amorphous metals, typically relies on the melting-quenching technique. However, this approach faces significant challenges when applied to recently emerging molecular glasses due to the inherent thermal instability of small molecules. Herein, the discovery of a new supramolecular glass (BGG) is presented, formed by a unique melting-quenching method that leverages unusual chemistry pathways. By manipulating the heating of a small molecule (benzoguanamine, BG), catalyst-free self-condensation reactions occur and produce multiple oligomers in a liquid state. The resulting high compositional and conformational entropy suppresses crystallization, allowing solidification into a rigid supramolecular glass under robust conditions. Despite being composed of low-weight molecules, the extensive intermolecular interactions endow BGG with distinct aggregation-induced emission (AIE, quantum yield up to 60%), polymer-like Young's modulus (7.95 GPa), and superior glass transition temperature (100.1 °C). BGG's excellent processability is exemplified by the fabrication of thin films and fibers, showcasing potential applications in photovoltaics and photonic waveguides. BGG also serves as a platform for synthesizing diverse donor-acceptor hybrids with &gt; 95% energy transfer efficiency, enabling the creation of advanced materials with customizable functionalities.</p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"13 27\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202501259\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adom.202501259\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adom.202501259","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

玻璃的制造,包括硅酸盐玻璃、聚合物和非晶态金属,通常依赖于熔融淬火技术。然而,由于小分子固有的热不稳定性,这种方法在应用于最近出现的分子玻璃时面临着重大挑战。本文提出了一种新的超分子玻璃(BGG)的发现,它是通过一种独特的熔融淬火方法形成的,该方法利用了不寻常的化学途径。通过控制加热小分子(苯并鸟胺,BG),发生无催化剂的自缩合反应,并产生液态的多种低聚物。由此产生的高组成和构象熵抑制了结晶,允许在坚固的条件下凝固成刚性的超分子玻璃。尽管BGG由低质量分子组成,但广泛的分子间相互作用使其具有明显的聚集诱导发射(AIE,量子产率高达60%),类似聚合物的杨氏模量(7.95 GPa)和优越的玻璃化转变温度(100.1℃)。BGG优异的可加工性在薄膜和光纤的制造中得到了体现,在光伏和光子波导中展示了潜在的应用。BGG还可以作为合成多种供体-受体混合材料的平台,具有95%的能量传递效率,可以创建具有可定制功能的先进材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Oligomerization-Induced Supramolecular Glass with Superior Processability and Optical Functions

Oligomerization-Induced Supramolecular Glass with Superior Processability and Optical Functions

Oligomerization-Induced Supramolecular Glass with Superior Processability and Optical Functions

Oligomerization-Induced Supramolecular Glass with Superior Processability and Optical Functions

The fabrication of glasses, including silicate glasses, polymers, and amorphous metals, typically relies on the melting-quenching technique. However, this approach faces significant challenges when applied to recently emerging molecular glasses due to the inherent thermal instability of small molecules. Herein, the discovery of a new supramolecular glass (BGG) is presented, formed by a unique melting-quenching method that leverages unusual chemistry pathways. By manipulating the heating of a small molecule (benzoguanamine, BG), catalyst-free self-condensation reactions occur and produce multiple oligomers in a liquid state. The resulting high compositional and conformational entropy suppresses crystallization, allowing solidification into a rigid supramolecular glass under robust conditions. Despite being composed of low-weight molecules, the extensive intermolecular interactions endow BGG with distinct aggregation-induced emission (AIE, quantum yield up to 60%), polymer-like Young's modulus (7.95 GPa), and superior glass transition temperature (100.1 °C). BGG's excellent processability is exemplified by the fabrication of thin films and fibers, showcasing potential applications in photovoltaics and photonic waveguides. BGG also serves as a platform for synthesizing diverse donor-acceptor hybrids with > 95% energy transfer efficiency, enabling the creation of advanced materials with customizable functionalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信