光催化体系的泵-泵-探针光谱机理研究

IF 3 4区 化学 Q3 CHEMISTRY, PHYSICAL
Daniel H. Cruz Neto, Thomas Pino, Minh-Huong Ha-Thi
{"title":"光催化体系的泵-泵-探针光谱机理研究","authors":"Daniel H. Cruz Neto,&nbsp;Thomas Pino,&nbsp;Minh-Huong Ha-Thi","doi":"10.1002/cptc.202500113","DOIUrl":null,"url":null,"abstract":"<p>Understanding the mechanism through which a photochemical reaction proceeds grants access to thermodynamic and kinetic parameters that allow its optimization for large-scale applications. In the last few years, photocatalytic systems have been major players in scientific developments on research fields of primary importance, including solar fuel generation in artificial photosynthesis, and the use of excited organic radical ions as photocatalysts in thermodynamically challenging reactions of utmost synthetic relevance. Generally, time-resolved spectroscopic approaches are the main experimental tools to investigative the dynamics of photoactive systems, with pump-probe-based ones being the golden standard in photophysical and photochemical research. However, for photocatalytic systems in which multiple photons are required, which is generally the case for photosynthetic reactions and those promoted by excited organic radical ions, the pump-probe approach is no longer sufficient since it is based on a single photon-to-electron ratio. This is where a second actinic pump excitation comes into play in what is known as pump-pump-probe spectroscopy. In this review, we explore how this approach is used to unravel the mechanism of photocatalytic systems triggered by light using different probes of UV–vis absorption and resonance Raman scattering in varying time scales.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"9 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cptc.202500113","citationCount":"0","resultStr":"{\"title\":\"Mechanistic Investigations of Photocatalytic Systems by Pump-Pump-Probe Spectroscopy\",\"authors\":\"Daniel H. Cruz Neto,&nbsp;Thomas Pino,&nbsp;Minh-Huong Ha-Thi\",\"doi\":\"10.1002/cptc.202500113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding the mechanism through which a photochemical reaction proceeds grants access to thermodynamic and kinetic parameters that allow its optimization for large-scale applications. In the last few years, photocatalytic systems have been major players in scientific developments on research fields of primary importance, including solar fuel generation in artificial photosynthesis, and the use of excited organic radical ions as photocatalysts in thermodynamically challenging reactions of utmost synthetic relevance. Generally, time-resolved spectroscopic approaches are the main experimental tools to investigative the dynamics of photoactive systems, with pump-probe-based ones being the golden standard in photophysical and photochemical research. However, for photocatalytic systems in which multiple photons are required, which is generally the case for photosynthetic reactions and those promoted by excited organic radical ions, the pump-probe approach is no longer sufficient since it is based on a single photon-to-electron ratio. This is where a second actinic pump excitation comes into play in what is known as pump-pump-probe spectroscopy. In this review, we explore how this approach is used to unravel the mechanism of photocatalytic systems triggered by light using different probes of UV–vis absorption and resonance Raman scattering in varying time scales.</p>\",\"PeriodicalId\":10108,\"journal\":{\"name\":\"ChemPhotoChem\",\"volume\":\"9 9\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cptc.202500113\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPhotoChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cptc.202500113\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhotoChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cptc.202500113","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

了解光化学反应进行的机理,可以获得热力学和动力学参数,从而使其在大规模应用中得到优化。在过去的几年里,光催化系统已经成为科学发展的主要参与者,主要研究领域包括人工光合作用中的太阳能燃料发电,以及在与合成相关的最具热力学挑战性的反应中使用激发的有机自由基离子作为光催化剂。一般来说,时间分辨光谱方法是研究光活性系统动力学的主要实验工具,而基于泵浦探针的方法是光物理和光化学研究的金标准。然而,对于需要多个光子的光催化系统,这通常是光合反应和受激发的有机自由基离子促进的情况,泵-探针方法不再足够,因为它是基于单个光子电子比。这就是第二个光化泵激发在所谓的泵-泵-探针光谱学中发挥作用的地方。在这篇综述中,我们探讨了如何使用这种方法来揭示由不同时间尺度的不同紫外-可见吸收探针和共振拉曼散射探针引发的光催化系统的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mechanistic Investigations of Photocatalytic Systems by Pump-Pump-Probe Spectroscopy

Mechanistic Investigations of Photocatalytic Systems by Pump-Pump-Probe Spectroscopy

Mechanistic Investigations of Photocatalytic Systems by Pump-Pump-Probe Spectroscopy

Mechanistic Investigations of Photocatalytic Systems by Pump-Pump-Probe Spectroscopy

Understanding the mechanism through which a photochemical reaction proceeds grants access to thermodynamic and kinetic parameters that allow its optimization for large-scale applications. In the last few years, photocatalytic systems have been major players in scientific developments on research fields of primary importance, including solar fuel generation in artificial photosynthesis, and the use of excited organic radical ions as photocatalysts in thermodynamically challenging reactions of utmost synthetic relevance. Generally, time-resolved spectroscopic approaches are the main experimental tools to investigative the dynamics of photoactive systems, with pump-probe-based ones being the golden standard in photophysical and photochemical research. However, for photocatalytic systems in which multiple photons are required, which is generally the case for photosynthetic reactions and those promoted by excited organic radical ions, the pump-probe approach is no longer sufficient since it is based on a single photon-to-electron ratio. This is where a second actinic pump excitation comes into play in what is known as pump-pump-probe spectroscopy. In this review, we explore how this approach is used to unravel the mechanism of photocatalytic systems triggered by light using different probes of UV–vis absorption and resonance Raman scattering in varying time scales.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemPhotoChem
ChemPhotoChem Chemistry-Physical and Theoretical Chemistry
CiteScore
5.80
自引率
5.40%
发文量
165
期刊介绍: Light plays a crucial role in natural processes and leads to exciting phenomena in molecules and materials. ChemPhotoChem welcomes exceptional international research in the entire scope of pure and applied photochemistry, photobiology, and photophysics. Our thorough editorial practices aid us in publishing authoritative research fast. We support the photochemistry community to be a leading light in science. We understand the huge pressures the scientific community is facing every day and we want to support you. Chemistry Europe is an association of 16 chemical societies from 15 European countries. Run by chemists, for chemists—we evaluate, publish, disseminate, and amplify the scientific excellence of chemistry researchers from around the globe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信