机器学习帮助数据挖掘构建锂离子电池描述符数据库

MetalMat Pub Date : 2025-06-28 DOI:10.1002/metm.70008
Xiran Zhao, Zhaomeng Liu, Lukang Zhao, Xuan-Wen Gao, Tianzhen Ren, Wen-Bin Luo
{"title":"机器学习帮助数据挖掘构建锂离子电池描述符数据库","authors":"Xiran Zhao,&nbsp;Zhaomeng Liu,&nbsp;Lukang Zhao,&nbsp;Xuan-Wen Gao,&nbsp;Tianzhen Ren,&nbsp;Wen-Bin Luo","doi":"10.1002/metm.70008","DOIUrl":null,"url":null,"abstract":"<p>The rapid development of computer science has made machine learning (ML)-driven design a research hotspot in high-performance lithium-ion batteries. Descriptors play a critical role in ML processes, as accurate descriptors significantly improve prediction accuracy (achieving over 92% validation accuracy in density functional theory [DFT]-calibrated models). Although open-source databases offer rich material data, their operational complexity hinders effective utilization. This review highlights ML algorithms that streamline data extraction from these repositories, slashing experimental iterations by 75%–80%. Further analyze future challenges in descriptor acquisition for lithium-ion batteries. This review is to provide insights into dataset construction and ML-compatible descriptor generation, accelerating electrode material discovery from conventional 5–7 years to &lt; 18 months in recent cases.</p>","PeriodicalId":100919,"journal":{"name":"MetalMat","volume":"2 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/metm.70008","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Helps Data Mining to Build Descriptor Databases for Lithium-Ion Batteries\",\"authors\":\"Xiran Zhao,&nbsp;Zhaomeng Liu,&nbsp;Lukang Zhao,&nbsp;Xuan-Wen Gao,&nbsp;Tianzhen Ren,&nbsp;Wen-Bin Luo\",\"doi\":\"10.1002/metm.70008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rapid development of computer science has made machine learning (ML)-driven design a research hotspot in high-performance lithium-ion batteries. Descriptors play a critical role in ML processes, as accurate descriptors significantly improve prediction accuracy (achieving over 92% validation accuracy in density functional theory [DFT]-calibrated models). Although open-source databases offer rich material data, their operational complexity hinders effective utilization. This review highlights ML algorithms that streamline data extraction from these repositories, slashing experimental iterations by 75%–80%. Further analyze future challenges in descriptor acquisition for lithium-ion batteries. This review is to provide insights into dataset construction and ML-compatible descriptor generation, accelerating electrode material discovery from conventional 5–7 years to &lt; 18 months in recent cases.</p>\",\"PeriodicalId\":100919,\"journal\":{\"name\":\"MetalMat\",\"volume\":\"2 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/metm.70008\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MetalMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/metm.70008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MetalMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/metm.70008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算机科学的快速发展使得机器学习驱动设计成为高性能锂离子电池的研究热点。描述符在机器学习过程中起着至关重要的作用,因为准确的描述符可以显著提高预测精度(在密度泛函理论[DFT]校准的模型中实现超过92%的验证精度)。尽管开源数据库提供了丰富的物质数据,但其操作的复杂性阻碍了有效利用。这篇综述强调了从这些存储库中简化数据提取的ML算法,将实验迭代减少了75%-80%。进一步分析锂离子电池描述符获取的未来挑战。这篇综述提供了数据集构建和ml兼容描述符生成的见解,将电极材料的发现从传统的5-7年缩短到最近的18个月。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine Learning Helps Data Mining to Build Descriptor Databases for Lithium-Ion Batteries

Machine Learning Helps Data Mining to Build Descriptor Databases for Lithium-Ion Batteries

The rapid development of computer science has made machine learning (ML)-driven design a research hotspot in high-performance lithium-ion batteries. Descriptors play a critical role in ML processes, as accurate descriptors significantly improve prediction accuracy (achieving over 92% validation accuracy in density functional theory [DFT]-calibrated models). Although open-source databases offer rich material data, their operational complexity hinders effective utilization. This review highlights ML algorithms that streamline data extraction from these repositories, slashing experimental iterations by 75%–80%. Further analyze future challenges in descriptor acquisition for lithium-ion batteries. This review is to provide insights into dataset construction and ML-compatible descriptor generation, accelerating electrode material discovery from conventional 5–7 years to < 18 months in recent cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信