CsPbBr3钙钛矿量子点玻璃的超长衰减寿命

IF 7.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ronghua Chen, Bin Zhuang, Jidong Lin, Tao Pang, Lingwei Zeng, Daqin Chen
{"title":"CsPbBr3钙钛矿量子点玻璃的超长衰减寿命","authors":"Ronghua Chen,&nbsp;Bin Zhuang,&nbsp;Jidong Lin,&nbsp;Tao Pang,&nbsp;Lingwei Zeng,&nbsp;Daqin Chen","doi":"10.1002/adom.202501385","DOIUrl":null,"url":null,"abstract":"<p>Embedding perovskite quantum dots (PeQDs) inside robust glass can address notorious instability issues, but the carrier dynamics in this kind of nanocomposite have not been well understood. In this work, different from the case of colloidal CsPbBr<sub>3</sub> PeQDs, the photoluminescent (PL) decay lifetime of CsPbBr<sub>3</sub>@glass experiencing high-temperature crystallization shows a giant elongation from nanoseconds (≈76 ns) to microseconds (≈2 µs). Temperature-dependent time-resolved PL spectra and femtosecond transient absorption (fs-TA) spectra evidence that the defect states within the bandgap acting as carrier trapping centers are responsible for the observed ultralong lifetime. This allows carriers to return to the conduction band via thermal activation from the defect states and participate in radiative recombination. Exploring the mechanisms of ultra-long fluorescence lifetimes in PeQDs@glass will provide deeper insights into their characteristics and offer new strategies for developing novel time-domain optoelectronic applications.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 27","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultralong Decay Lifetime for CsPbBr3 Perovskite Quantum Dots Glass\",\"authors\":\"Ronghua Chen,&nbsp;Bin Zhuang,&nbsp;Jidong Lin,&nbsp;Tao Pang,&nbsp;Lingwei Zeng,&nbsp;Daqin Chen\",\"doi\":\"10.1002/adom.202501385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Embedding perovskite quantum dots (PeQDs) inside robust glass can address notorious instability issues, but the carrier dynamics in this kind of nanocomposite have not been well understood. In this work, different from the case of colloidal CsPbBr<sub>3</sub> PeQDs, the photoluminescent (PL) decay lifetime of CsPbBr<sub>3</sub>@glass experiencing high-temperature crystallization shows a giant elongation from nanoseconds (≈76 ns) to microseconds (≈2 µs). Temperature-dependent time-resolved PL spectra and femtosecond transient absorption (fs-TA) spectra evidence that the defect states within the bandgap acting as carrier trapping centers are responsible for the observed ultralong lifetime. This allows carriers to return to the conduction band via thermal activation from the defect states and participate in radiative recombination. Exploring the mechanisms of ultra-long fluorescence lifetimes in PeQDs@glass will provide deeper insights into their characteristics and offer new strategies for developing novel time-domain optoelectronic applications.</p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"13 27\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adom.202501385\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adom.202501385","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在坚固的玻璃中嵌入钙钛矿量子点(PeQDs)可以解决臭名昭著的不稳定性问题,但这种纳米复合材料中的载流子动力学尚未得到很好的理解。在这项工作中,与胶体CsPbBr3 PeQDs不同,CsPbBr3@glass经历高温结晶的光致发光(PL)衰减寿命从纳秒(≈76 ns)到微秒(≈2µs)有很大的延长。温度相关的时间分辨PL光谱和飞秒瞬态吸收(fs-TA)光谱证明,带隙内的缺陷态作为载流子捕获中心是观察到的超长寿命的原因。这允许载流子通过热激活从缺陷状态返回到导带,并参与辐射复合。在PeQDs@glass中探索超长荧光寿命的机制将为深入了解其特性提供更深入的见解,并为开发新的时域光电应用提供新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultralong Decay Lifetime for CsPbBr3 Perovskite Quantum Dots Glass

Ultralong Decay Lifetime for CsPbBr3 Perovskite Quantum Dots Glass

Ultralong Decay Lifetime for CsPbBr3 Perovskite Quantum Dots Glass

Embedding perovskite quantum dots (PeQDs) inside robust glass can address notorious instability issues, but the carrier dynamics in this kind of nanocomposite have not been well understood. In this work, different from the case of colloidal CsPbBr3 PeQDs, the photoluminescent (PL) decay lifetime of CsPbBr3@glass experiencing high-temperature crystallization shows a giant elongation from nanoseconds (≈76 ns) to microseconds (≈2 µs). Temperature-dependent time-resolved PL spectra and femtosecond transient absorption (fs-TA) spectra evidence that the defect states within the bandgap acting as carrier trapping centers are responsible for the observed ultralong lifetime. This allows carriers to return to the conduction band via thermal activation from the defect states and participate in radiative recombination. Exploring the mechanisms of ultra-long fluorescence lifetimes in PeQDs@glass will provide deeper insights into their characteristics and offer new strategies for developing novel time-domain optoelectronic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信