{"title":"气候因素对呼吸药品需求的影响:希腊预测模型的比较","authors":"Viviana Schisa, Matteo Farnè","doi":"10.1002/env.70041","DOIUrl":null,"url":null,"abstract":"<p>Climate change is increasingly recognized as a driver of health-related outcomes, yet its impact on pharmaceutical demand remains largely understudied. As environmental conditions evolve and extreme weather events intensify, anticipating their influence on medical needs is essential for designing resilient healthcare systems. This study examines the relationship between climate variability and the weekly demand for respiratory prescription pharmaceuticals in Greece, based on a dataset spanning seven and a half years (390 weeks). Granger-causality spectra are employed to explore potential causal relationships. Following variable selection, four forecasting models are implemented: Prophet, a Vector Autoregressive model with exogenous variables (VARX), Random Forest with Moving Block Bootstrap (MBB-RF), and Long Short-Term Memory (LSTM) networks. The MBB-RF model achieves the best performance in relative error metrics while providing robust insights through variable importance rankings. The LSTM model outperforms most metrics, highlighting its ability to capture nonlinear dependencies. The VARX model, which includes Prophet-based exogenous inputs, balances interpretability and accuracy, although it is slightly less competitive in overall predictive performance. These findings underscore the added value of climate-sensitive variables in modeling pharmaceutical demand and provide a data-driven foundation for adaptive strategies in healthcare planning under changing environmental conditions.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 7","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.70041","citationCount":"0","resultStr":"{\"title\":\"The Impact of Climatic Factors on Respiratory Pharmaceutical Demand: A Comparison of Forecasting Models for Greece\",\"authors\":\"Viviana Schisa, Matteo Farnè\",\"doi\":\"10.1002/env.70041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Climate change is increasingly recognized as a driver of health-related outcomes, yet its impact on pharmaceutical demand remains largely understudied. As environmental conditions evolve and extreme weather events intensify, anticipating their influence on medical needs is essential for designing resilient healthcare systems. This study examines the relationship between climate variability and the weekly demand for respiratory prescription pharmaceuticals in Greece, based on a dataset spanning seven and a half years (390 weeks). Granger-causality spectra are employed to explore potential causal relationships. Following variable selection, four forecasting models are implemented: Prophet, a Vector Autoregressive model with exogenous variables (VARX), Random Forest with Moving Block Bootstrap (MBB-RF), and Long Short-Term Memory (LSTM) networks. The MBB-RF model achieves the best performance in relative error metrics while providing robust insights through variable importance rankings. The LSTM model outperforms most metrics, highlighting its ability to capture nonlinear dependencies. The VARX model, which includes Prophet-based exogenous inputs, balances interpretability and accuracy, although it is slightly less competitive in overall predictive performance. These findings underscore the added value of climate-sensitive variables in modeling pharmaceutical demand and provide a data-driven foundation for adaptive strategies in healthcare planning under changing environmental conditions.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"36 7\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.70041\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.70041\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.70041","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The Impact of Climatic Factors on Respiratory Pharmaceutical Demand: A Comparison of Forecasting Models for Greece
Climate change is increasingly recognized as a driver of health-related outcomes, yet its impact on pharmaceutical demand remains largely understudied. As environmental conditions evolve and extreme weather events intensify, anticipating their influence on medical needs is essential for designing resilient healthcare systems. This study examines the relationship between climate variability and the weekly demand for respiratory prescription pharmaceuticals in Greece, based on a dataset spanning seven and a half years (390 weeks). Granger-causality spectra are employed to explore potential causal relationships. Following variable selection, four forecasting models are implemented: Prophet, a Vector Autoregressive model with exogenous variables (VARX), Random Forest with Moving Block Bootstrap (MBB-RF), and Long Short-Term Memory (LSTM) networks. The MBB-RF model achieves the best performance in relative error metrics while providing robust insights through variable importance rankings. The LSTM model outperforms most metrics, highlighting its ability to capture nonlinear dependencies. The VARX model, which includes Prophet-based exogenous inputs, balances interpretability and accuracy, although it is slightly less competitive in overall predictive performance. These findings underscore the added value of climate-sensitive variables in modeling pharmaceutical demand and provide a data-driven foundation for adaptive strategies in healthcare planning under changing environmental conditions.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.