全可见光可切换薄膜晶体管

IF 7.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Taibin Wang, Paolo Samorì, Lili Hou
{"title":"全可见光可切换薄膜晶体管","authors":"Taibin Wang,&nbsp;Paolo Samorì,&nbsp;Lili Hou","doi":"10.1002/adom.202501408","DOIUrl":null,"url":null,"abstract":"<p>Stimuli-responsive organic thin-film transistors (TFTs), such as light-switchable TFTs, are key components for multifunctional optoelectronics beyond Moore. However, the modulation of the light-switchable TFTs output developed so far requires the use of ultraviolet (UV) light, despite the latter triggers photooxidation and degradation of the molecular materials and hybrids thereof. Herein, an all-visible light-switchable TFT is reported whose current output can be reversibly interconverted between two different states by non-coherent and low-power (&lt;1 mW cm<sup>−2</sup>) visible light. The light-sensitive material is assembled by blending CdS quantum dots (QDs) coated by photochromic diarylethene (DAE) molecules with a semiconducting <i>p</i>-type poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno[3,2-b]thiophene)] (DPP-DTT). For the first time, triplet energy transfer (TET) at the organic-inorganic interface between photochromic molecules and QDs is exploited to drive light-switchable TFTs devices, enabling DAEs reversible photoisomerization when exposed to 405 nm and 515 nm visible light. Significantly, the conversion efficiency of DAEs via all-visible-light switching is comparable to that achieved under UV light irradiation, while the light switching fatigue resistance of the devices displayed a radical improvement. The work provides a new pathway to realize all-visible-light activated devices for future design of advanced digital optoelectronics in the context of next-generation data storage technologies and neuromorphic computing.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 27","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"All-Visible Light-Switchable Thin-Film Transistor\",\"authors\":\"Taibin Wang,&nbsp;Paolo Samorì,&nbsp;Lili Hou\",\"doi\":\"10.1002/adom.202501408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stimuli-responsive organic thin-film transistors (TFTs), such as light-switchable TFTs, are key components for multifunctional optoelectronics beyond Moore. However, the modulation of the light-switchable TFTs output developed so far requires the use of ultraviolet (UV) light, despite the latter triggers photooxidation and degradation of the molecular materials and hybrids thereof. Herein, an all-visible light-switchable TFT is reported whose current output can be reversibly interconverted between two different states by non-coherent and low-power (&lt;1 mW cm<sup>−2</sup>) visible light. The light-sensitive material is assembled by blending CdS quantum dots (QDs) coated by photochromic diarylethene (DAE) molecules with a semiconducting <i>p</i>-type poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno[3,2-b]thiophene)] (DPP-DTT). For the first time, triplet energy transfer (TET) at the organic-inorganic interface between photochromic molecules and QDs is exploited to drive light-switchable TFTs devices, enabling DAEs reversible photoisomerization when exposed to 405 nm and 515 nm visible light. Significantly, the conversion efficiency of DAEs via all-visible-light switching is comparable to that achieved under UV light irradiation, while the light switching fatigue resistance of the devices displayed a radical improvement. The work provides a new pathway to realize all-visible-light activated devices for future design of advanced digital optoelectronics in the context of next-generation data storage technologies and neuromorphic computing.</p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"13 27\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adom.202501408\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adom.202501408","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

刺激响应有机薄膜晶体管(TFTs),如光开关TFTs,是多功能光电器件的关键部件。然而,迄今为止开发的光开关TFTs输出的调制需要使用紫外线(UV)光,尽管后者会引发分子材料及其杂化物的光氧化和降解。本文报道了一种全可见光可切换TFT,其电流输出可以通过非相干和低功率(<1 mW cm−2)可见光在两种不同状态之间可逆地相互转换。该光敏材料是通过将光致变色二乙烯(DAE)分子包覆的CdS量子点(QDs)与半导体p型聚[2,5-(2-辛基十二烷基)-3,6-二酮吡咯-吡咯-醛-5,5-(2,5-二(噻吩-2-基)噻吩[3,2-b]噻吩](DPP-DTT)混合而成。首次利用光致变色分子与量子点之间有机-无机界面的三重态能量转移(TET)来驱动可光开关的TFTs器件,使DAEs在暴露于405 nm和515 nm可见光下实现可逆的光异构化。值得注意的是,通过全可见光开关的DAEs转换效率与紫外光照射下的转换效率相当,同时器件的光开关抗疲劳性能得到了根本性的改善。这项工作为在下一代数据存储技术和神经形态计算的背景下实现先进数字光电子的未来设计提供了全可见光激活器件的新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

All-Visible Light-Switchable Thin-Film Transistor

All-Visible Light-Switchable Thin-Film Transistor

All-Visible Light-Switchable Thin-Film Transistor

Stimuli-responsive organic thin-film transistors (TFTs), such as light-switchable TFTs, are key components for multifunctional optoelectronics beyond Moore. However, the modulation of the light-switchable TFTs output developed so far requires the use of ultraviolet (UV) light, despite the latter triggers photooxidation and degradation of the molecular materials and hybrids thereof. Herein, an all-visible light-switchable TFT is reported whose current output can be reversibly interconverted between two different states by non-coherent and low-power (<1 mW cm−2) visible light. The light-sensitive material is assembled by blending CdS quantum dots (QDs) coated by photochromic diarylethene (DAE) molecules with a semiconducting p-type poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno[3,2-b]thiophene)] (DPP-DTT). For the first time, triplet energy transfer (TET) at the organic-inorganic interface between photochromic molecules and QDs is exploited to drive light-switchable TFTs devices, enabling DAEs reversible photoisomerization when exposed to 405 nm and 515 nm visible light. Significantly, the conversion efficiency of DAEs via all-visible-light switching is comparable to that achieved under UV light irradiation, while the light switching fatigue resistance of the devices displayed a radical improvement. The work provides a new pathway to realize all-visible-light activated devices for future design of advanced digital optoelectronics in the context of next-generation data storage technologies and neuromorphic computing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信