Wangming Su, Pinsheng Qiu, Yanling Li, Ping Xie, Xiaoyong Yuan
{"title":"整合基因组学揭示了细胞衰老驱动的分子网络和近视发病机制中的免疫串扰","authors":"Wangming Su, Pinsheng Qiu, Yanling Li, Ping Xie, Xiaoyong Yuan","doi":"10.1002/ccs3.70045","DOIUrl":null,"url":null,"abstract":"<p>Myopia, a leading global health challenge linked to severe ocular complications, remains poorly understood in terms of molecular mechanisms involving cellular senescence. This study integrates transcriptomic datasets (GSE112155 and GSE151631) from myopia and normal vision samples to unravel senescence-driven pathways and immune interactions underlying myopia pathogenesis. By constructing protein–protein interaction networks and post-transcriptional regulatory axes (mRNA–miRNA–TF), we identified core senescence-associated genes (Tp53, Cdkn1a, and Myc) as central regulators in myopia progression. Single-sample gene set enrichment analysis revealed significant immune dysregulation in myopia, marked by altered infiltration of γδ T cells, natural killer T cells, and neutrophils. Functional validation through Tp53 overexpression and Cdkn1a/Myc knockout in mice demonstrated their critical roles in exacerbating myopia phenotypes, including elongated eye axis and thickened retina. These findings highlight a synergistic interplay between cellular senescence and immune-mediated mechanisms in myopia, supported by multi-omics evidence and in vivo experiments. Our work not only maps the molecular networks bridging senescence and myopia but also proposes novel therapeutic targets for modulating these pathways. This study advances the understanding of myopia as a senescence-associated disorder and underscores the potential of targeting immune–senescence crosstalk for intervention.</p>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"19 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ccs3.70045","citationCount":"0","resultStr":"{\"title\":\"Integrated genomics reveals cellular senescence-driven molecular networks and immune crosstalk in myopia pathogenesis\",\"authors\":\"Wangming Su, Pinsheng Qiu, Yanling Li, Ping Xie, Xiaoyong Yuan\",\"doi\":\"10.1002/ccs3.70045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Myopia, a leading global health challenge linked to severe ocular complications, remains poorly understood in terms of molecular mechanisms involving cellular senescence. This study integrates transcriptomic datasets (GSE112155 and GSE151631) from myopia and normal vision samples to unravel senescence-driven pathways and immune interactions underlying myopia pathogenesis. By constructing protein–protein interaction networks and post-transcriptional regulatory axes (mRNA–miRNA–TF), we identified core senescence-associated genes (Tp53, Cdkn1a, and Myc) as central regulators in myopia progression. Single-sample gene set enrichment analysis revealed significant immune dysregulation in myopia, marked by altered infiltration of γδ T cells, natural killer T cells, and neutrophils. Functional validation through Tp53 overexpression and Cdkn1a/Myc knockout in mice demonstrated their critical roles in exacerbating myopia phenotypes, including elongated eye axis and thickened retina. These findings highlight a synergistic interplay between cellular senescence and immune-mediated mechanisms in myopia, supported by multi-omics evidence and in vivo experiments. Our work not only maps the molecular networks bridging senescence and myopia but also proposes novel therapeutic targets for modulating these pathways. This study advances the understanding of myopia as a senescence-associated disorder and underscores the potential of targeting immune–senescence crosstalk for intervention.</p>\",\"PeriodicalId\":15226,\"journal\":{\"name\":\"Journal of Cell Communication and Signaling\",\"volume\":\"19 3\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ccs3.70045\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ccs3.70045\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ccs3.70045","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Integrated genomics reveals cellular senescence-driven molecular networks and immune crosstalk in myopia pathogenesis
Myopia, a leading global health challenge linked to severe ocular complications, remains poorly understood in terms of molecular mechanisms involving cellular senescence. This study integrates transcriptomic datasets (GSE112155 and GSE151631) from myopia and normal vision samples to unravel senescence-driven pathways and immune interactions underlying myopia pathogenesis. By constructing protein–protein interaction networks and post-transcriptional regulatory axes (mRNA–miRNA–TF), we identified core senescence-associated genes (Tp53, Cdkn1a, and Myc) as central regulators in myopia progression. Single-sample gene set enrichment analysis revealed significant immune dysregulation in myopia, marked by altered infiltration of γδ T cells, natural killer T cells, and neutrophils. Functional validation through Tp53 overexpression and Cdkn1a/Myc knockout in mice demonstrated their critical roles in exacerbating myopia phenotypes, including elongated eye axis and thickened retina. These findings highlight a synergistic interplay between cellular senescence and immune-mediated mechanisms in myopia, supported by multi-omics evidence and in vivo experiments. Our work not only maps the molecular networks bridging senescence and myopia but also proposes novel therapeutic targets for modulating these pathways. This study advances the understanding of myopia as a senescence-associated disorder and underscores the potential of targeting immune–senescence crosstalk for intervention.
期刊介绍:
The Journal of Cell Communication and Signaling provides a forum for fundamental and translational research. In particular, it publishes papers discussing intercellular and intracellular signaling pathways that are particularly important to understand how cells interact with each other and with the surrounding environment, and how cellular behavior contributes to pathological states. JCCS encourages the submission of research manuscripts, timely reviews and short commentaries discussing recent publications, key developments and controversies.
Research manuscripts can be published under two different sections :
In the Pathology and Translational Research Section (Section Editor Andrew Leask) , manuscripts report original research dealing with celllular aspects of normal and pathological signaling and communication, with a particular interest in translational research.
In the Molecular Signaling Section (Section Editor Satoshi Kubota) manuscripts report original signaling research performed at molecular levels with a particular interest in the functions of intracellular and membrane components involved in cell signaling.