Toeplitz矩阵法与Hilbert核非线性Volterra-Fredholm积分方程

IF 1.2 Q3 MATHEMATICS, APPLIED
Sameeha Ali Raad, Ahlam Yahya Alabdali
{"title":"Toeplitz矩阵法与Hilbert核非线性Volterra-Fredholm积分方程","authors":"Sameeha Ali Raad,&nbsp;Ahlam Yahya Alabdali","doi":"10.1155/cmm4/5541765","DOIUrl":null,"url":null,"abstract":"<p>This work emphasizes the investigation of the solution to the nonlinear Volterra–Fredholm integral equation (NV-FIE) and the necessary conditions for a unique solution. The first step is to convert the NV-FIE into a system of nonlinear Fredholm integral equations (NFIEs) using the splitting of the time interval. Analytical and semianalytical approaches are unable to solve this kind of singular integral equation due to the cumulative increase in error. While the Toeplitz matrix method (TMM) is considered one of the best methods to solve singular integral equations, its importance lies in the fact that it addresses singularity and provides simple, direct integrals. Therefore, in this study, the TMM is employed on the MIE to obtain an algebraic system. Finally, a numerical example is discussed as an application, and the error is calculated. One of the most prominent results of this study is the flexibility and efficiency of TMM in solving integral equations when the kernel takes the Hilbert type.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2025 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/cmm4/5541765","citationCount":"0","resultStr":"{\"title\":\"Toeplitz Matrix Method and Nonlinear Volterra–Fredholm Integral Equation With Hilbert Kernel\",\"authors\":\"Sameeha Ali Raad,&nbsp;Ahlam Yahya Alabdali\",\"doi\":\"10.1155/cmm4/5541765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work emphasizes the investigation of the solution to the nonlinear Volterra–Fredholm integral equation (NV-FIE) and the necessary conditions for a unique solution. The first step is to convert the NV-FIE into a system of nonlinear Fredholm integral equations (NFIEs) using the splitting of the time interval. Analytical and semianalytical approaches are unable to solve this kind of singular integral equation due to the cumulative increase in error. While the Toeplitz matrix method (TMM) is considered one of the best methods to solve singular integral equations, its importance lies in the fact that it addresses singularity and provides simple, direct integrals. Therefore, in this study, the TMM is employed on the MIE to obtain an algebraic system. Finally, a numerical example is discussed as an application, and the error is calculated. One of the most prominent results of this study is the flexibility and efficiency of TMM in solving integral equations when the kernel takes the Hilbert type.</p>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/cmm4/5541765\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/cmm4/5541765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/cmm4/5541765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了非线性Volterra-Fredholm积分方程(NV-FIE)的解及其唯一解的必要条件。第一步是利用时间间隔的分裂将NV-FIE转换成非线性Fredholm积分方程(NFIEs)系统。解析法和半解析法由于误差的累积增大而无法求解这类奇异积分方程。虽然Toeplitz矩阵法(TMM)被认为是求解奇异积分方程的最佳方法之一,但其重要性在于它解决了奇点问题并提供了简单的直接积分。因此,在本研究中,将TMM应用于MIE得到一个代数系统。最后给出了应用实例,并对误差进行了计算。本研究最突出的结果之一是当核为Hilbert型时,TMM在求解积分方程方面的灵活性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Toeplitz Matrix Method and Nonlinear Volterra–Fredholm Integral Equation With Hilbert Kernel

Toeplitz Matrix Method and Nonlinear Volterra–Fredholm Integral Equation With Hilbert Kernel

This work emphasizes the investigation of the solution to the nonlinear Volterra–Fredholm integral equation (NV-FIE) and the necessary conditions for a unique solution. The first step is to convert the NV-FIE into a system of nonlinear Fredholm integral equations (NFIEs) using the splitting of the time interval. Analytical and semianalytical approaches are unable to solve this kind of singular integral equation due to the cumulative increase in error. While the Toeplitz matrix method (TMM) is considered one of the best methods to solve singular integral equations, its importance lies in the fact that it addresses singularity and provides simple, direct integrals. Therefore, in this study, the TMM is employed on the MIE to obtain an algebraic system. Finally, a numerical example is discussed as an application, and the error is calculated. One of the most prominent results of this study is the flexibility and efficiency of TMM in solving integral equations when the kernel takes the Hilbert type.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信