超薄Ta/Fe/Pt自旋电子三层膜增强太赫兹辐射

IF 7.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Evangelos Th. Papaioannou, Laura Scheuer, Garik Torosyan, George P. Dimitrakopulos, Sławomir Kret, Alina D. Crisan, Ovidiu Crisan, René Beigang, Thomas Kehagias
{"title":"超薄Ta/Fe/Pt自旋电子三层膜增强太赫兹辐射","authors":"Evangelos Th. Papaioannou,&nbsp;Laura Scheuer,&nbsp;Garik Torosyan,&nbsp;George P. Dimitrakopulos,&nbsp;Sławomir Kret,&nbsp;Alina D. Crisan,&nbsp;Ovidiu Crisan,&nbsp;René Beigang,&nbsp;Thomas Kehagias","doi":"10.1002/adom.202500874","DOIUrl":null,"url":null,"abstract":"<p>Terahertz (THz) spintronic emitters represent a novel class of heterostructures composed of ferromagnetic (FM) and non-magnetic (NM) metallic layers that strongly emit terahertz (THz) radiation upon femtosecond laser pulse excitation. The optimal geometric configuration to maximize the strength of the emission is currently considered a trilayer structure, NM<sub>1</sub>/FM/NM<sub>2</sub>, where the FM layer is confined between two NM layers with opposite spin Hall angles. To investigate this, ultrathin Ta/Fe/Pt trilayers are fabricated and their THz emission profiles are analyzed. These results show that the highest THz emission is achieved for the sample of Ta (1.5 nm)/Fe (2 nm)/Pt (2 nm), demonstrating a significant enhancement compared to standard FM/NM bilayers. Furthermore, the thickness dependence of the THz emission is modeled in Ta (<i>t<sub>1</sub></i> nm)/Fe (2 nm)/Pt <i>(t<sub>2</sub></i> nm), varying t<sub>1</sub> and t<sub>2</sub> from 1 nm to 3 nm. From this analysis, spin diffusion lengths of λ<sub>Pt</sub> = 1.2 nm and λ<sub>Ta</sub> = 0.85 nm are extracted. The structure–property relationship is assessed via transmission electron microscopy, revealing that an epitaxial single-crystalline Ta layer covers the MgO surface with Ta adopting a high-resistivity <i>fcc</i> allotropic phase with a lattice parameter of <i>a</i> = 0.436 nm. This phase, together with the prerequisite for low Ta+Pt thickness, emerges as a key factor in achieving high THz emission from trilayer structures.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 27","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202500874","citationCount":"0","resultStr":"{\"title\":\"Enhanced THz Emission From Ultrathin Ta/Fe/Pt Spintronic Trilayers\",\"authors\":\"Evangelos Th. Papaioannou,&nbsp;Laura Scheuer,&nbsp;Garik Torosyan,&nbsp;George P. Dimitrakopulos,&nbsp;Sławomir Kret,&nbsp;Alina D. Crisan,&nbsp;Ovidiu Crisan,&nbsp;René Beigang,&nbsp;Thomas Kehagias\",\"doi\":\"10.1002/adom.202500874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Terahertz (THz) spintronic emitters represent a novel class of heterostructures composed of ferromagnetic (FM) and non-magnetic (NM) metallic layers that strongly emit terahertz (THz) radiation upon femtosecond laser pulse excitation. The optimal geometric configuration to maximize the strength of the emission is currently considered a trilayer structure, NM<sub>1</sub>/FM/NM<sub>2</sub>, where the FM layer is confined between two NM layers with opposite spin Hall angles. To investigate this, ultrathin Ta/Fe/Pt trilayers are fabricated and their THz emission profiles are analyzed. These results show that the highest THz emission is achieved for the sample of Ta (1.5 nm)/Fe (2 nm)/Pt (2 nm), demonstrating a significant enhancement compared to standard FM/NM bilayers. Furthermore, the thickness dependence of the THz emission is modeled in Ta (<i>t<sub>1</sub></i> nm)/Fe (2 nm)/Pt <i>(t<sub>2</sub></i> nm), varying t<sub>1</sub> and t<sub>2</sub> from 1 nm to 3 nm. From this analysis, spin diffusion lengths of λ<sub>Pt</sub> = 1.2 nm and λ<sub>Ta</sub> = 0.85 nm are extracted. The structure–property relationship is assessed via transmission electron microscopy, revealing that an epitaxial single-crystalline Ta layer covers the MgO surface with Ta adopting a high-resistivity <i>fcc</i> allotropic phase with a lattice parameter of <i>a</i> = 0.436 nm. This phase, together with the prerequisite for low Ta+Pt thickness, emerges as a key factor in achieving high THz emission from trilayer structures.</p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"13 27\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202500874\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adom.202500874\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adom.202500874","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

太赫兹(THz)自旋电子发射器是一类由铁磁(FM)和非磁性(NM)金属层组成的新型异质结构,在飞秒激光脉冲激发下强烈发射太赫兹(THz)辐射。目前认为,最大限度提高发射强度的最佳几何构型是三层结构NM1/FM/NM2,其中FM层被限制在两个具有相反自旋霍尔角的NM层之间。为此,制备了超薄的Ta/Fe/Pt三层薄膜,并对其太赫兹发射谱进行了分析。这些结果表明,Ta (1.5 nm)/Fe (2 nm)/Pt (2 nm)样品的太赫兹辐射最高,与标准FM/ nm双层膜相比有显著增强。此外,太赫兹辐射的厚度依赖模型为Ta (t1 nm)/Fe (2 nm)/Pt (t2 nm), t1和t2在1 nm到3 nm之间变化。通过分析得到λPt = 1.2 nm和λTa = 0.85 nm的自旋扩散长度。通过透射电镜对结构-性能关系进行了评价,发现外延单晶Ta层覆盖在MgO表面,Ta采用高电阻率fcc同素异形体相,晶格参数为a = 0.436 nm。这一阶段,连同低Ta+Pt厚度的先决条件,成为实现三层结构高太赫兹发射的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced THz Emission From Ultrathin Ta/Fe/Pt Spintronic Trilayers

Enhanced THz Emission From Ultrathin Ta/Fe/Pt Spintronic Trilayers

Enhanced THz Emission From Ultrathin Ta/Fe/Pt Spintronic Trilayers

Enhanced THz Emission From Ultrathin Ta/Fe/Pt Spintronic Trilayers

Terahertz (THz) spintronic emitters represent a novel class of heterostructures composed of ferromagnetic (FM) and non-magnetic (NM) metallic layers that strongly emit terahertz (THz) radiation upon femtosecond laser pulse excitation. The optimal geometric configuration to maximize the strength of the emission is currently considered a trilayer structure, NM1/FM/NM2, where the FM layer is confined between two NM layers with opposite spin Hall angles. To investigate this, ultrathin Ta/Fe/Pt trilayers are fabricated and their THz emission profiles are analyzed. These results show that the highest THz emission is achieved for the sample of Ta (1.5 nm)/Fe (2 nm)/Pt (2 nm), demonstrating a significant enhancement compared to standard FM/NM bilayers. Furthermore, the thickness dependence of the THz emission is modeled in Ta (t1 nm)/Fe (2 nm)/Pt (t2 nm), varying t1 and t2 from 1 nm to 3 nm. From this analysis, spin diffusion lengths of λPt = 1.2 nm and λTa = 0.85 nm are extracted. The structure–property relationship is assessed via transmission electron microscopy, revealing that an epitaxial single-crystalline Ta layer covers the MgO surface with Ta adopting a high-resistivity fcc allotropic phase with a lattice parameter of a = 0.436 nm. This phase, together with the prerequisite for low Ta+Pt thickness, emerges as a key factor in achieving high THz emission from trilayer structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信