{"title":"化学中机器学习预测的对比解释","authors":"Alec Lamens, Jürgen Bajorath","doi":"10.1186/s13321-025-01100-6","DOIUrl":null,"url":null,"abstract":"<div><p>The concept of contrastive explanations originating from human reasoning is used in explainable artificial intelligence. In machine learning, contrastive explanations relate alternative prediction outcomes to each other involving the identification of features leading to opposing model decisions. We introduce a methodological framework for deriving contrastive explanations for machine learning models in chemistry to systematically generate intuitive explanations of predictions in high-dimensional feature spaces. The molecular contrastive explanations (MolCE) methodology explores alternative model decisions by generating virtual analogues of test compounds through replacements of molecular building blocks and quantifies the degree of “contrastive shifts” resulting from changes in model probability distributions. In a proof-of-concept study, MolCE was applied to explain selectivity predictions of ligands of D2-like dopamine receptor isoforms.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01100-6","citationCount":"0","resultStr":"{\"title\":\"Contrastive explanations for machine learning predictions in chemistry\",\"authors\":\"Alec Lamens, Jürgen Bajorath\",\"doi\":\"10.1186/s13321-025-01100-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The concept of contrastive explanations originating from human reasoning is used in explainable artificial intelligence. In machine learning, contrastive explanations relate alternative prediction outcomes to each other involving the identification of features leading to opposing model decisions. We introduce a methodological framework for deriving contrastive explanations for machine learning models in chemistry to systematically generate intuitive explanations of predictions in high-dimensional feature spaces. The molecular contrastive explanations (MolCE) methodology explores alternative model decisions by generating virtual analogues of test compounds through replacements of molecular building blocks and quantifies the degree of “contrastive shifts” resulting from changes in model probability distributions. In a proof-of-concept study, MolCE was applied to explain selectivity predictions of ligands of D2-like dopamine receptor isoforms.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01100-6\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-01100-6\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01100-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Contrastive explanations for machine learning predictions in chemistry
The concept of contrastive explanations originating from human reasoning is used in explainable artificial intelligence. In machine learning, contrastive explanations relate alternative prediction outcomes to each other involving the identification of features leading to opposing model decisions. We introduce a methodological framework for deriving contrastive explanations for machine learning models in chemistry to systematically generate intuitive explanations of predictions in high-dimensional feature spaces. The molecular contrastive explanations (MolCE) methodology explores alternative model decisions by generating virtual analogues of test compounds through replacements of molecular building blocks and quantifies the degree of “contrastive shifts” resulting from changes in model probability distributions. In a proof-of-concept study, MolCE was applied to explain selectivity predictions of ligands of D2-like dopamine receptor isoforms.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.