伽罗瓦液晶码分解线性码及其在EAQEC码中的应用

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Hui Li, Xiusheng Liu
{"title":"伽罗瓦液晶码分解线性码及其在EAQEC码中的应用","authors":"Hui Li,&nbsp;Xiusheng Liu","doi":"10.1007/s11128-025-04920-5","DOIUrl":null,"url":null,"abstract":"<div><p>Entanglement-assisted quantum error-correcting (EAQEC) codes are a subclass of quantum error-correcting codes which use entanglement as a resource. These codes can provide error correction capability higher than the codes derived from the traditional stabilizer formalism. In this paper, we first give a <i>s</i>-Galois LCD codes decomposition of linear codes over finite fields. By means of this decomposition of cyclic codes and matrix-product codes, we provide two methods to construct EAQEC codes, and we find new EAQEC codes. In addition, our EAQEC codes have improved parameters (e.g., higher minimum distance or greater dimension).</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 9","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Galois LCD codes decomposition of linear codes and their applications to EAQEC codes\",\"authors\":\"Hui Li,&nbsp;Xiusheng Liu\",\"doi\":\"10.1007/s11128-025-04920-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Entanglement-assisted quantum error-correcting (EAQEC) codes are a subclass of quantum error-correcting codes which use entanglement as a resource. These codes can provide error correction capability higher than the codes derived from the traditional stabilizer formalism. In this paper, we first give a <i>s</i>-Galois LCD codes decomposition of linear codes over finite fields. By means of this decomposition of cyclic codes and matrix-product codes, we provide two methods to construct EAQEC codes, and we find new EAQEC codes. In addition, our EAQEC codes have improved parameters (e.g., higher minimum distance or greater dimension).</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"24 9\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-025-04920-5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04920-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

纠缠辅助量子纠错码是利用纠缠作为资源的量子纠错码的一个子类。这些码比传统稳定器形式的码具有更高的纠错能力。本文首先给出了有限域上线性码的s-伽罗瓦液晶码分解。通过对循环码和矩阵积码的分解,给出了构造EAQEC码的两种方法,并找到了新的EAQEC码。此外,我们的EAQEC规范改进了参数(例如,更高的最小距离或更大的尺寸)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Galois LCD codes decomposition of linear codes and their applications to EAQEC codes

Entanglement-assisted quantum error-correcting (EAQEC) codes are a subclass of quantum error-correcting codes which use entanglement as a resource. These codes can provide error correction capability higher than the codes derived from the traditional stabilizer formalism. In this paper, we first give a s-Galois LCD codes decomposition of linear codes over finite fields. By means of this decomposition of cyclic codes and matrix-product codes, we provide two methods to construct EAQEC codes, and we find new EAQEC codes. In addition, our EAQEC codes have improved parameters (e.g., higher minimum distance or greater dimension).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信