致密相对\(\textrm{SO}_0(2,q)\) -穿孔球的特征变种

IF 0.7 3区 数学 Q3 MATHEMATICS
Yu Feng, Junming Zhang
{"title":"致密相对\\(\\textrm{SO}_0(2,q)\\) -穿孔球的特征变种","authors":"Yu Feng,&nbsp;Junming Zhang","doi":"10.1007/s10455-025-10016-1","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that there are relative <span>\\({\\textrm{SO}}_0(2,q)\\)</span>-character varieties of the punctured sphere which are compact, totally non-hyperbolic and contain a dense representation. This work fills a remaining case of the results of N. Tholozan and J. Toulisse. Our approach relies on the non-abelian Hodge correspondence and we study the moduli space of parabolic <span>\\({\\textrm{SO}}_0(2,q)\\)</span>-Higgs bundles with some fixed weight. Additionally, we provide a construction based on Geometric Invariant Theory (GIT) to demonstrate that the considered moduli spaces can be viewed as a projective variety over <span>\\(\\mathbb {C}\\)</span>.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"68 3","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact relative \\\\(\\\\textrm{SO}_0(2,q)\\\\)-character varieties of punctured spheres\",\"authors\":\"Yu Feng,&nbsp;Junming Zhang\",\"doi\":\"10.1007/s10455-025-10016-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that there are relative <span>\\\\({\\\\textrm{SO}}_0(2,q)\\\\)</span>-character varieties of the punctured sphere which are compact, totally non-hyperbolic and contain a dense representation. This work fills a remaining case of the results of N. Tholozan and J. Toulisse. Our approach relies on the non-abelian Hodge correspondence and we study the moduli space of parabolic <span>\\\\({\\\\textrm{SO}}_0(2,q)\\\\)</span>-Higgs bundles with some fixed weight. Additionally, we provide a construction based on Geometric Invariant Theory (GIT) to demonstrate that the considered moduli spaces can be viewed as a projective variety over <span>\\\\(\\\\mathbb {C}\\\\)</span>.</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":\"68 3\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-025-10016-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-025-10016-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了穿孔球存在相对的\({\textrm{SO}}_0(2,q)\) -字符变体,它们是紧致的,完全非双曲的,并且包含密集的表示。这项工作填补了N. Tholozan和J. Toulisse的结果的剩余案例。我们的方法依赖于非阿贝尔霍奇对应,我们研究了具有一定定权的抛物型\({\textrm{SO}}_0(2,q)\) -希格斯束的模空间。此外,我们提供了一个基于几何不变理论(GIT)的构造,以证明所考虑的模空间可以被视为\(\mathbb {C}\)上的射影变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compact relative \(\textrm{SO}_0(2,q)\)-character varieties of punctured spheres

We prove that there are relative \({\textrm{SO}}_0(2,q)\)-character varieties of the punctured sphere which are compact, totally non-hyperbolic and contain a dense representation. This work fills a remaining case of the results of N. Tholozan and J. Toulisse. Our approach relies on the non-abelian Hodge correspondence and we study the moduli space of parabolic \({\textrm{SO}}_0(2,q)\)-Higgs bundles with some fixed weight. Additionally, we provide a construction based on Geometric Invariant Theory (GIT) to demonstrate that the considered moduli spaces can be viewed as a projective variety over \(\mathbb {C}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信