{"title":"等离子体介质中非最小耦合Horndeski黑洞周围的引力透镜和阴影","authors":"Shubham Kala, Jaswinder Singh","doi":"10.1140/epjc/s10052-025-14793-8","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the light deflection and the shadow characteristics of a non-minimally coupled Horndeski black hole surrounded by a magnetized, cold, pressureless plasma medium, while considering both homogeneous and non-homogeneous plasma distributions. We consider an analytical expression for the deflection angle of light and analyze how it is influenced by the plasma properties and the Horndeski coupling constant. The circular light orbits, which define the photon sphere, are also analyzed for both types of plasma media, highlighting their impact on the shadow boundary. The shadow properties of the black hole are examined in detail, and constraints on the model parameters are derived by comparing the theoretical shadow radius with observational measurements of Sgr A* and M87* obtained by the Event Horizon Telescope Collaboration. We also study the black hole shadow images along with the corresponding intensity profiles produced by a radially infalling accretion flow in the plasma environment. The results are particularly interesting, as they reveal how the modified black hole geometry affects both the plasma distribution and the black hole parameters in a realistic astrophysical context.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 9","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14793-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Gravitational lensing and shadow around a non-minimally coupled Horndeski black hole in plasma medium\",\"authors\":\"Shubham Kala, Jaswinder Singh\",\"doi\":\"10.1140/epjc/s10052-025-14793-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the light deflection and the shadow characteristics of a non-minimally coupled Horndeski black hole surrounded by a magnetized, cold, pressureless plasma medium, while considering both homogeneous and non-homogeneous plasma distributions. We consider an analytical expression for the deflection angle of light and analyze how it is influenced by the plasma properties and the Horndeski coupling constant. The circular light orbits, which define the photon sphere, are also analyzed for both types of plasma media, highlighting their impact on the shadow boundary. The shadow properties of the black hole are examined in detail, and constraints on the model parameters are derived by comparing the theoretical shadow radius with observational measurements of Sgr A* and M87* obtained by the Event Horizon Telescope Collaboration. We also study the black hole shadow images along with the corresponding intensity profiles produced by a radially infalling accretion flow in the plasma environment. The results are particularly interesting, as they reveal how the modified black hole geometry affects both the plasma distribution and the black hole parameters in a realistic astrophysical context.\\n</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"85 9\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14793-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-025-14793-8\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14793-8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Gravitational lensing and shadow around a non-minimally coupled Horndeski black hole in plasma medium
We investigate the light deflection and the shadow characteristics of a non-minimally coupled Horndeski black hole surrounded by a magnetized, cold, pressureless plasma medium, while considering both homogeneous and non-homogeneous plasma distributions. We consider an analytical expression for the deflection angle of light and analyze how it is influenced by the plasma properties and the Horndeski coupling constant. The circular light orbits, which define the photon sphere, are also analyzed for both types of plasma media, highlighting their impact on the shadow boundary. The shadow properties of the black hole are examined in detail, and constraints on the model parameters are derived by comparing the theoretical shadow radius with observational measurements of Sgr A* and M87* obtained by the Event Horizon Telescope Collaboration. We also study the black hole shadow images along with the corresponding intensity profiles produced by a radially infalling accretion flow in the plasma environment. The results are particularly interesting, as they reveal how the modified black hole geometry affects both the plasma distribution and the black hole parameters in a realistic astrophysical context.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.