{"title":"表征微分算子的不等式","authors":"Gerd Herzog, Peer Kunstmann","doi":"10.1007/s00010-025-01158-5","DOIUrl":null,"url":null,"abstract":"<div><p>We show that under certain inequality assumptions an arbitrary linear operator <span>\\(D:C^\\infty (\\mathbb {R}) \\rightarrow C(\\mathbb {R})\\)</span> is a differential operator, for example, if <i>D</i>[<i>f</i>] is nonnegative in local minima of <i>f</i>.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 4","pages":"1773 - 1780"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-025-01158-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Inequalities characterizing differential operators\",\"authors\":\"Gerd Herzog, Peer Kunstmann\",\"doi\":\"10.1007/s00010-025-01158-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that under certain inequality assumptions an arbitrary linear operator <span>\\\\(D:C^\\\\infty (\\\\mathbb {R}) \\\\rightarrow C(\\\\mathbb {R})\\\\)</span> is a differential operator, for example, if <i>D</i>[<i>f</i>] is nonnegative in local minima of <i>f</i>.</p></div>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":\"99 4\",\"pages\":\"1773 - 1780\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00010-025-01158-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-025-01158-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-025-01158-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We show that under certain inequality assumptions an arbitrary linear operator \(D:C^\infty (\mathbb {R}) \rightarrow C(\mathbb {R})\) is a differential operator, for example, if D[f] is nonnegative in local minima of f.
期刊介绍:
aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.