平面曲线上广义多项式的替代方程

IF 0.7 3区 数学 Q2 MATHEMATICS
Bruce Ebanks
{"title":"平面曲线上广义多项式的替代方程","authors":"Bruce Ebanks","doi":"10.1007/s00010-025-01163-8","DOIUrl":null,"url":null,"abstract":"<div><p>We study the Pexiderized alternative equation (PAE): <span>\\(f(x)g(y) = 0\\)</span> for all <span>\\((x,y) \\in S\\)</span>, where <span>\\(f,g:{\\mathbb {R}}\\rightarrow {\\mathbb {R}}\\)</span> are generalized polynomials and <i>S</i> is a plane curve. This extends the study of the alternative equation (AE): <span>\\(f(x)f(y) = 0\\)</span> for <span>\\((x,y) \\in S\\)</span>, where <span>\\(f:{\\mathbb {R}}\\rightarrow {\\mathbb {R}}\\)</span> is an additive function or other generalized polynomial. The main question about (AE) is whether <span>\\(f=0\\)</span> is the unique solution, and for (PAE) whether it implies that <span>\\(f=0\\)</span> or <span>\\(g=0\\)</span>. In the case of (AE) it is known that <span>\\(f=0\\)</span> is the unique additive solution when <i>S</i> is a circle centered at the origin, a curve with polynomial parametrization, or a certain form of hyperbola. Moreover some results are known for (AE) when <i>f</i> is assumed to be a generalized polynomial. Our findings generalize and extend those results to (PAE) and to other plane curves. As a consequence we also gain some new results about (AE).</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 4","pages":"1843 - 1853"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alternative equations for generalized polynomials on plane curves\",\"authors\":\"Bruce Ebanks\",\"doi\":\"10.1007/s00010-025-01163-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the Pexiderized alternative equation (PAE): <span>\\\\(f(x)g(y) = 0\\\\)</span> for all <span>\\\\((x,y) \\\\in S\\\\)</span>, where <span>\\\\(f,g:{\\\\mathbb {R}}\\\\rightarrow {\\\\mathbb {R}}\\\\)</span> are generalized polynomials and <i>S</i> is a plane curve. This extends the study of the alternative equation (AE): <span>\\\\(f(x)f(y) = 0\\\\)</span> for <span>\\\\((x,y) \\\\in S\\\\)</span>, where <span>\\\\(f:{\\\\mathbb {R}}\\\\rightarrow {\\\\mathbb {R}}\\\\)</span> is an additive function or other generalized polynomial. The main question about (AE) is whether <span>\\\\(f=0\\\\)</span> is the unique solution, and for (PAE) whether it implies that <span>\\\\(f=0\\\\)</span> or <span>\\\\(g=0\\\\)</span>. In the case of (AE) it is known that <span>\\\\(f=0\\\\)</span> is the unique additive solution when <i>S</i> is a circle centered at the origin, a curve with polynomial parametrization, or a certain form of hyperbola. Moreover some results are known for (AE) when <i>f</i> is assumed to be a generalized polynomial. Our findings generalize and extend those results to (PAE) and to other plane curves. As a consequence we also gain some new results about (AE).</p></div>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":\"99 4\",\"pages\":\"1843 - 1853\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-025-01163-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-025-01163-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了所有\((x,y) \in S\)的peiderized alternative equation (PAE): \(f(x)g(y) = 0\),其中\(f,g:{\mathbb {R}}\rightarrow {\mathbb {R}}\)是广义多项式,S是一条平面曲线。这扩展了对\((x,y) \in S\)的替代方程(AE): \(f(x)f(y) = 0\)的研究,其中\(f:{\mathbb {R}}\rightarrow {\mathbb {R}}\)是一个可加函数或其他广义多项式。关于(AE)的主要问题是\(f=0\)是否是唯一解,对于(PAE)它是否意味着\(f=0\)或\(g=0\)。在(AE)的情况下,已知\(f=0\)是S为原点为圆心的圆、多项式参数化曲线或某种形式的双曲线时的唯一加性解。此外,当假设f为广义多项式时,已知(AE)的一些结果。我们的发现将这些结果推广并扩展到(PAE)和其他平面曲线。因此,我们也获得了一些关于(AE)的新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alternative equations for generalized polynomials on plane curves

We study the Pexiderized alternative equation (PAE): \(f(x)g(y) = 0\) for all \((x,y) \in S\), where \(f,g:{\mathbb {R}}\rightarrow {\mathbb {R}}\) are generalized polynomials and S is a plane curve. This extends the study of the alternative equation (AE): \(f(x)f(y) = 0\) for \((x,y) \in S\), where \(f:{\mathbb {R}}\rightarrow {\mathbb {R}}\) is an additive function or other generalized polynomial. The main question about (AE) is whether \(f=0\) is the unique solution, and for (PAE) whether it implies that \(f=0\) or \(g=0\). In the case of (AE) it is known that \(f=0\) is the unique additive solution when S is a circle centered at the origin, a curve with polynomial parametrization, or a certain form of hyperbola. Moreover some results are known for (AE) when f is assumed to be a generalized polynomial. Our findings generalize and extend those results to (PAE) and to other plane curves. As a consequence we also gain some new results about (AE).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信