量子决策理论-极小极大方法

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Andrzej Łuczak
{"title":"量子决策理论-极小极大方法","authors":"Andrzej Łuczak","doi":"10.1007/s11128-025-04924-1","DOIUrl":null,"url":null,"abstract":"<div><p>We show a connection between the minimax and Bayes approaches in quantum decision theory in a general setting of normal states on a von Neumann algebra. In particular, the quantum minimax theorem is proven in a fairly general situation, and it is shown that every minimax strategy is Bayes for some a priori distribution on the set of states—a so-called <i>least favourable prior</i>. Minimax strategies with constant risk are investigated in some detail. It turns out that in dimension greater than two such a strategy can be Bayes for a non-uniform a priori distribution which, at the same time, is a least favourable prior.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11128-025-04924-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantum decision theory—minimax approach\",\"authors\":\"Andrzej Łuczak\",\"doi\":\"10.1007/s11128-025-04924-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show a connection between the minimax and Bayes approaches in quantum decision theory in a general setting of normal states on a von Neumann algebra. In particular, the quantum minimax theorem is proven in a fairly general situation, and it is shown that every minimax strategy is Bayes for some a priori distribution on the set of states—a so-called <i>least favourable prior</i>. Minimax strategies with constant risk are investigated in some detail. It turns out that in dimension greater than two such a strategy can be Bayes for a non-uniform a priori distribution which, at the same time, is a least favourable prior.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"24 10\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11128-025-04924-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-025-04924-1\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04924-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了量子决策理论中最小极大和贝叶斯方法在冯·诺伊曼代数上的一般正常状态设置之间的联系。特别地,量子极大极小定理在相当一般的情况下得到了证明,并且证明了对于状态集上的某个先验分布(所谓的最不利先验),每个极大极小策略都是贝叶斯。对具有恒定风险的极大极小策略进行了详细的研究。事实证明,在大于2维的情况下,这种策略对于非均匀先验分布来说是贝叶斯的,同时也是最不利的先验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum decision theory—minimax approach

We show a connection between the minimax and Bayes approaches in quantum decision theory in a general setting of normal states on a von Neumann algebra. In particular, the quantum minimax theorem is proven in a fairly general situation, and it is shown that every minimax strategy is Bayes for some a priori distribution on the set of states—a so-called least favourable prior. Minimax strategies with constant risk are investigated in some detail. It turns out that in dimension greater than two such a strategy can be Bayes for a non-uniform a priori distribution which, at the same time, is a least favourable prior.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信