Asad Syed, Abdallah M. Elgorban, Ali H. Bahkali, Shifa Wang, Ling Shing Wong, Bikram Dhara, Daniel Ejim Uti, Esther Ugo Alum, Item Justin Atangwho
{"title":"杉木衍生产品治疗阿尔茨海默病的潜力","authors":"Asad Syed, Abdallah M. Elgorban, Ali H. Bahkali, Shifa Wang, Ling Shing Wong, Bikram Dhara, Daniel Ejim Uti, Esther Ugo Alum, Item Justin Atangwho","doi":"10.1007/s12031-025-02409-5","DOIUrl":null,"url":null,"abstract":"<div><p>AD is a neurodegenerative disorder and is associated with the presence of amyloid-β plaques and neurofibrillary tangles leading to net loss of neurons, which demonstrates an urgent unmet need to develop new human health therapies based on the fundamental mechanisms of oxidative stress and neuroinflammation. This work is a computational assessment of the potential use of neolupenol, a triterpenoid produced in <i>Pluchea lanceolata</i>, as a pharmacologically active compound that exerted its beneficial effect through the modulation of the Keap1-Nrf2 axis, one of the central regulators of the antioxidant response. Using an integrated approach that combined network pharmacology, molecular docking, and molecular dynamics (MD) simulations, we identified neolupenol as a high-affinity Keap1-binding molecule capable of activating the Nrf2-mediated neuroprotective pathway. Virtual screening of 25 phytochemicals from <i>Pluchea lanceolata</i> (retrieved from the PubChem database) with customized filters revealed neolupenol as the top candidate, showing strong binding affinity (− 8.22 kcal/mol; Ki = 1.45 µM) toward the Keap1 Kelch domain (PDB ID: 2FLU). The docked complex demonstrated hydrogen bonds with VAL463 (2.17 Å), THR560, and ILE559, along with hydrophobic interactions involving CYS513, ALA366, and VAL514, which collectively stabilized the ligand at the Neh2-binding interface. Network pharmacology yielded 30 of such common targets of AD-neolupenol (e.g., GSK3B, CASP3, TNF, and BACE1), enriched in pathways such as amyloid processing, tau phosphorylation, oxidative stress response, and lipid metabolism (FDR-adjusted <i>p</i> < 0.0001). Complex stability was verified by MD simulations (100 ns): RMSD of the backbone 2.34–3.84 = 2.34 Å, unchanged radius of gyration (17.8–18.0 Å), and stable inter-hydrogen bonding. Residues VAL561, PHE577, and SER602 were found to have an interaction occupancy of > 70%, providing a basis of dynamic stability. The triterpenoid cavity appeared in neolupenol contributing to pleasant PK, the ability to herald the blood–brain barrier, and suboptimal toxicity. These results position neolupenol as a potent, multi-target neuroprotective agent that disrupts Keap1–Nrf2 interaction, promoting Nrf2 nuclear translocation and antioxidant gene activation. Future work warrants in vivo validation of its efficacy in mitigating AD pathology and clinical translation.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"75 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Therapeutic Potential of products derived from Pluchea lanceolata for Alzheimer’s Disease Treatment\",\"authors\":\"Asad Syed, Abdallah M. Elgorban, Ali H. Bahkali, Shifa Wang, Ling Shing Wong, Bikram Dhara, Daniel Ejim Uti, Esther Ugo Alum, Item Justin Atangwho\",\"doi\":\"10.1007/s12031-025-02409-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>AD is a neurodegenerative disorder and is associated with the presence of amyloid-β plaques and neurofibrillary tangles leading to net loss of neurons, which demonstrates an urgent unmet need to develop new human health therapies based on the fundamental mechanisms of oxidative stress and neuroinflammation. This work is a computational assessment of the potential use of neolupenol, a triterpenoid produced in <i>Pluchea lanceolata</i>, as a pharmacologically active compound that exerted its beneficial effect through the modulation of the Keap1-Nrf2 axis, one of the central regulators of the antioxidant response. Using an integrated approach that combined network pharmacology, molecular docking, and molecular dynamics (MD) simulations, we identified neolupenol as a high-affinity Keap1-binding molecule capable of activating the Nrf2-mediated neuroprotective pathway. Virtual screening of 25 phytochemicals from <i>Pluchea lanceolata</i> (retrieved from the PubChem database) with customized filters revealed neolupenol as the top candidate, showing strong binding affinity (− 8.22 kcal/mol; Ki = 1.45 µM) toward the Keap1 Kelch domain (PDB ID: 2FLU). The docked complex demonstrated hydrogen bonds with VAL463 (2.17 Å), THR560, and ILE559, along with hydrophobic interactions involving CYS513, ALA366, and VAL514, which collectively stabilized the ligand at the Neh2-binding interface. Network pharmacology yielded 30 of such common targets of AD-neolupenol (e.g., GSK3B, CASP3, TNF, and BACE1), enriched in pathways such as amyloid processing, tau phosphorylation, oxidative stress response, and lipid metabolism (FDR-adjusted <i>p</i> < 0.0001). Complex stability was verified by MD simulations (100 ns): RMSD of the backbone 2.34–3.84 = 2.34 Å, unchanged radius of gyration (17.8–18.0 Å), and stable inter-hydrogen bonding. Residues VAL561, PHE577, and SER602 were found to have an interaction occupancy of > 70%, providing a basis of dynamic stability. The triterpenoid cavity appeared in neolupenol contributing to pleasant PK, the ability to herald the blood–brain barrier, and suboptimal toxicity. These results position neolupenol as a potent, multi-target neuroprotective agent that disrupts Keap1–Nrf2 interaction, promoting Nrf2 nuclear translocation and antioxidant gene activation. Future work warrants in vivo validation of its efficacy in mitigating AD pathology and clinical translation.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":652,\"journal\":{\"name\":\"Journal of Molecular Neuroscience\",\"volume\":\"75 4\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12031-025-02409-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-025-02409-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Therapeutic Potential of products derived from Pluchea lanceolata for Alzheimer’s Disease Treatment
AD is a neurodegenerative disorder and is associated with the presence of amyloid-β plaques and neurofibrillary tangles leading to net loss of neurons, which demonstrates an urgent unmet need to develop new human health therapies based on the fundamental mechanisms of oxidative stress and neuroinflammation. This work is a computational assessment of the potential use of neolupenol, a triterpenoid produced in Pluchea lanceolata, as a pharmacologically active compound that exerted its beneficial effect through the modulation of the Keap1-Nrf2 axis, one of the central regulators of the antioxidant response. Using an integrated approach that combined network pharmacology, molecular docking, and molecular dynamics (MD) simulations, we identified neolupenol as a high-affinity Keap1-binding molecule capable of activating the Nrf2-mediated neuroprotective pathway. Virtual screening of 25 phytochemicals from Pluchea lanceolata (retrieved from the PubChem database) with customized filters revealed neolupenol as the top candidate, showing strong binding affinity (− 8.22 kcal/mol; Ki = 1.45 µM) toward the Keap1 Kelch domain (PDB ID: 2FLU). The docked complex demonstrated hydrogen bonds with VAL463 (2.17 Å), THR560, and ILE559, along with hydrophobic interactions involving CYS513, ALA366, and VAL514, which collectively stabilized the ligand at the Neh2-binding interface. Network pharmacology yielded 30 of such common targets of AD-neolupenol (e.g., GSK3B, CASP3, TNF, and BACE1), enriched in pathways such as amyloid processing, tau phosphorylation, oxidative stress response, and lipid metabolism (FDR-adjusted p < 0.0001). Complex stability was verified by MD simulations (100 ns): RMSD of the backbone 2.34–3.84 = 2.34 Å, unchanged radius of gyration (17.8–18.0 Å), and stable inter-hydrogen bonding. Residues VAL561, PHE577, and SER602 were found to have an interaction occupancy of > 70%, providing a basis of dynamic stability. The triterpenoid cavity appeared in neolupenol contributing to pleasant PK, the ability to herald the blood–brain barrier, and suboptimal toxicity. These results position neolupenol as a potent, multi-target neuroprotective agent that disrupts Keap1–Nrf2 interaction, promoting Nrf2 nuclear translocation and antioxidant gene activation. Future work warrants in vivo validation of its efficacy in mitigating AD pathology and clinical translation.
期刊介绍:
The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.