传入初级神经元模型的参数激励

IF 0.7 Q4 MECHANICS
D. I. Bugrov, M. M. Petrov
{"title":"传入初级神经元模型的参数激励","authors":"D. I. Bugrov,&nbsp;M. M. Petrov","doi":"10.3103/S0027133025700220","DOIUrl":null,"url":null,"abstract":"<p>A model of the afferent primary neuron in the form of the Hodgkin–Huxley equations modified by Aleksandrov–Soto is under consideration. It is shown that one of the model parameters (temperature) variation allows for a transition between the attraction areas of stationary and periodic solutions. It is concluded that the model under consideration can be used to describe the process of caloric vestibular stimulation.</p>","PeriodicalId":710,"journal":{"name":"Moscow University Mechanics Bulletin","volume":"80 3","pages":"138 - 142"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametric Excitation in a Model of Afferent Primary Neuron\",\"authors\":\"D. I. Bugrov,&nbsp;M. M. Petrov\",\"doi\":\"10.3103/S0027133025700220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A model of the afferent primary neuron in the form of the Hodgkin–Huxley equations modified by Aleksandrov–Soto is under consideration. It is shown that one of the model parameters (temperature) variation allows for a transition between the attraction areas of stationary and periodic solutions. It is concluded that the model under consideration can be used to describe the process of caloric vestibular stimulation.</p>\",\"PeriodicalId\":710,\"journal\":{\"name\":\"Moscow University Mechanics Bulletin\",\"volume\":\"80 3\",\"pages\":\"138 - 142\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Mechanics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0027133025700220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0027133025700220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

一个传入初级神经元的模型,其形式是由Aleksandrov-Soto修正的Hodgkin-Huxley方程。结果表明,其中一个模型参数(温度)的变化允许在平稳解和周期解的吸引区之间发生过渡。结果表明,该模型可用于描述前庭热刺激的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Parametric Excitation in a Model of Afferent Primary Neuron

Parametric Excitation in a Model of Afferent Primary Neuron

A model of the afferent primary neuron in the form of the Hodgkin–Huxley equations modified by Aleksandrov–Soto is under consideration. It is shown that one of the model parameters (temperature) variation allows for a transition between the attraction areas of stationary and periodic solutions. It is concluded that the model under consideration can be used to describe the process of caloric vestibular stimulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
9
期刊介绍: Moscow University Mechanics Bulletin  is the journal of scientific publications, reflecting the most important areas of mechanics at Lomonosov Moscow State University. The journal is dedicated to research in theoretical mechanics, applied mechanics and motion control, hydrodynamics, aeromechanics, gas and wave dynamics, theory of elasticity, theory of elasticity and mechanics of composites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信