{"title":"在平衡柯西方程上和周围","authors":"Ekaterina Shulman","doi":"10.1007/s00010-025-01155-8","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a unital semigroup, <span>\\((K, +)\\)</span> an Abelian group. We extend to this case results of several authors on functions <span>\\(f: G\\rightarrow K\\)</span> satisfying the equations </p><div><div><span>$$\\begin{aligned} f(x_1x_2\\ldots x_n) = \\sum _{i=1}^n F_i(x_1, \\ldots ,\\widehat{x_i}, \\ldots ,x_n) \\end{aligned}$$</span></div></div><p>and </p><div><div><span>$$\\begin{aligned} \\sum _{k=0}^n(-1)^{k}\\sum _{|S|=n-k}f \\left( \\prod _Sx \\right) = 0. \\end{aligned}$$</span></div></div><p>We also study a more general class of equations: </p><div><div><span>$$\\begin{aligned} f(x_1x_2\\ldots x_n) = \\sum _{i=1}^n \\sum _{j=1}^{J_i}p_{ij}(x_i)(F_{ij}(x_1,\\ldots ,\\widehat{x_i}, \\ldots , x_n)), \\end{aligned}$$</span></div></div><p>where all <span>\\(p_{ij}\\)</span> are polynomial maps from <i>G</i> to the group of all endomorphisms of <i>K</i>.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 4","pages":"1763 - 1772"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On and around the balanced Cauchy equation\",\"authors\":\"Ekaterina Shulman\",\"doi\":\"10.1007/s00010-025-01155-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>G</i> be a unital semigroup, <span>\\\\((K, +)\\\\)</span> an Abelian group. We extend to this case results of several authors on functions <span>\\\\(f: G\\\\rightarrow K\\\\)</span> satisfying the equations </p><div><div><span>$$\\\\begin{aligned} f(x_1x_2\\\\ldots x_n) = \\\\sum _{i=1}^n F_i(x_1, \\\\ldots ,\\\\widehat{x_i}, \\\\ldots ,x_n) \\\\end{aligned}$$</span></div></div><p>and </p><div><div><span>$$\\\\begin{aligned} \\\\sum _{k=0}^n(-1)^{k}\\\\sum _{|S|=n-k}f \\\\left( \\\\prod _Sx \\\\right) = 0. \\\\end{aligned}$$</span></div></div><p>We also study a more general class of equations: </p><div><div><span>$$\\\\begin{aligned} f(x_1x_2\\\\ldots x_n) = \\\\sum _{i=1}^n \\\\sum _{j=1}^{J_i}p_{ij}(x_i)(F_{ij}(x_1,\\\\ldots ,\\\\widehat{x_i}, \\\\ldots , x_n)), \\\\end{aligned}$$</span></div></div><p>where all <span>\\\\(p_{ij}\\\\)</span> are polynomial maps from <i>G</i> to the group of all endomorphisms of <i>K</i>.</p></div>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":\"99 4\",\"pages\":\"1763 - 1772\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-025-01155-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-025-01155-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let G be a unital semigroup, \((K, +)\) an Abelian group. We extend to this case results of several authors on functions \(f: G\rightarrow K\) satisfying the equations
期刊介绍:
aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.