与非线性波速相关的非线性修正Helmholtz方程的终值问题

IF 1 4区 数学 Q2 MATHEMATICS, APPLIED
Long Pham Nguyen Hoang, Triet Le Minh, Phong Luu Hong, Hieu Phan Trung
{"title":"与非线性波速相关的非线性修正Helmholtz方程的终值问题","authors":"Long Pham Nguyen Hoang,&nbsp;Triet Le Minh,&nbsp;Phong Luu Hong,&nbsp;Hieu Phan Trung","doi":"10.1007/s10440-025-00745-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on the development and analysis of the backward problem for the nonlinear modified Helmholtz equation associated with nonlinear wave velocity. The governing equation is given as follows </p><div><div><span>$$\\triangle u\\left ( x,y\\right ) -k\\left ( l_{0}\\left ( u\\right ) \\left ( y\\right ) \\right ) u\\left ( x,y\\right ) =S\\left ( x,y,u\\left ( x,y\\right ) \\right ) ,~x\\in \\Omega ,~0&lt; y&lt; L. $$</span></div></div><p> To overcome the ill-posseness of the above problem, we apply the variational quasi-reversibility method. It is imperative to investigate the convergence analysis of this regularization method when we do not determine a formula of the exact solution. In this regard, we construct the approximate problem by adding the so-called perturbing operator to the original problem and by exploiting the Fourier reconstructed the final data. Then, we obtain the Hölder convergence rate of the proposed scheme under some certain assumptions on the exact solution. Finally, a numerical example is provided to corroborate the theoretical results.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"199 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Final Value Problem for the Nonlinear Modified Helmholtz Equation Associated with the Nonlinear Wave Velocity\",\"authors\":\"Long Pham Nguyen Hoang,&nbsp;Triet Le Minh,&nbsp;Phong Luu Hong,&nbsp;Hieu Phan Trung\",\"doi\":\"10.1007/s10440-025-00745-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study focuses on the development and analysis of the backward problem for the nonlinear modified Helmholtz equation associated with nonlinear wave velocity. The governing equation is given as follows </p><div><div><span>$$\\\\triangle u\\\\left ( x,y\\\\right ) -k\\\\left ( l_{0}\\\\left ( u\\\\right ) \\\\left ( y\\\\right ) \\\\right ) u\\\\left ( x,y\\\\right ) =S\\\\left ( x,y,u\\\\left ( x,y\\\\right ) \\\\right ) ,~x\\\\in \\\\Omega ,~0&lt; y&lt; L. $$</span></div></div><p> To overcome the ill-posseness of the above problem, we apply the variational quasi-reversibility method. It is imperative to investigate the convergence analysis of this regularization method when we do not determine a formula of the exact solution. In this regard, we construct the approximate problem by adding the so-called perturbing operator to the original problem and by exploiting the Fourier reconstructed the final data. Then, we obtain the Hölder convergence rate of the proposed scheme under some certain assumptions on the exact solution. Finally, a numerical example is provided to corroborate the theoretical results.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"199 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-025-00745-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-025-00745-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了与非线性波速相关的非线性修正亥姆霍兹方程的后向问题的发展和分析。控制方程如下$$\triangle u\left ( x,y\right ) -k\left ( l_{0}\left ( u\right ) \left ( y\right ) \right ) u\left ( x,y\right ) =S\left ( x,y,u\left ( x,y\right ) \right ) ,~x\in \Omega ,~0< y< L. $$为克服上述问题的病态性,我们采用变分拟可逆性方法。当我们没有确定精确解的公式时,研究这种正则化方法的收敛性分析是必要的。在这方面,我们通过在原始问题中加入所谓的扰动算子并利用傅里叶重构最终数据来构造近似问题。然后,在精确解的某些假设下,我们得到了该方案的Hölder收敛速率。最后,通过数值算例验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Final Value Problem for the Nonlinear Modified Helmholtz Equation Associated with the Nonlinear Wave Velocity

This study focuses on the development and analysis of the backward problem for the nonlinear modified Helmholtz equation associated with nonlinear wave velocity. The governing equation is given as follows

$$\triangle u\left ( x,y\right ) -k\left ( l_{0}\left ( u\right ) \left ( y\right ) \right ) u\left ( x,y\right ) =S\left ( x,y,u\left ( x,y\right ) \right ) ,~x\in \Omega ,~0< y< L. $$

To overcome the ill-posseness of the above problem, we apply the variational quasi-reversibility method. It is imperative to investigate the convergence analysis of this regularization method when we do not determine a formula of the exact solution. In this regard, we construct the approximate problem by adding the so-called perturbing operator to the original problem and by exploiting the Fourier reconstructed the final data. Then, we obtain the Hölder convergence rate of the proposed scheme under some certain assumptions on the exact solution. Finally, a numerical example is provided to corroborate the theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信