自由空间通信的阴影面积和自由度

IF 2.2
Mats Gustafsson
{"title":"自由空间通信的阴影面积和自由度","authors":"Mats Gustafsson","doi":"10.1109/JSAIT.2025.3600363","DOIUrl":null,"url":null,"abstract":"The number of degrees of freedom (NDoF) in a communication channel fundamentally limits the number of independent spatial modes available for transmitting and receiving information. Although the NDoF can be computed numerically for specific configurations using singular value decomposition (SVD) of the channel operator, this approach provides limited physical insight. In this paper, we introduce a simple analytical estimate for the NDoF between arbitrarily shaped transmitter and receiver regions in free space. In the electrically large limit, where the NDoF is high, it is well approximated by the mutual shadow area, measured in units of wavelength squared. This area corresponds to the projected overlap of the regions, integrated over all lines of sight, and captures their effective spatial coupling. The proposed estimate generalizes and unifies several previously established results, including those based on Weyl’s law, shadow area, and the paraxial approximation. We analyze several example configurations to illustrate the accuracy of the estimate and validate it through comparisons with numerical SVD computations of the propagation channel. The results provide both practical tools and physical insight for the design and analysis of high-capacity communication and sensing systems.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"6 ","pages":"325-337"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shadow Area and Degrees of Freedom for Free-Space Communication\",\"authors\":\"Mats Gustafsson\",\"doi\":\"10.1109/JSAIT.2025.3600363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The number of degrees of freedom (NDoF) in a communication channel fundamentally limits the number of independent spatial modes available for transmitting and receiving information. Although the NDoF can be computed numerically for specific configurations using singular value decomposition (SVD) of the channel operator, this approach provides limited physical insight. In this paper, we introduce a simple analytical estimate for the NDoF between arbitrarily shaped transmitter and receiver regions in free space. In the electrically large limit, where the NDoF is high, it is well approximated by the mutual shadow area, measured in units of wavelength squared. This area corresponds to the projected overlap of the regions, integrated over all lines of sight, and captures their effective spatial coupling. The proposed estimate generalizes and unifies several previously established results, including those based on Weyl’s law, shadow area, and the paraxial approximation. We analyze several example configurations to illustrate the accuracy of the estimate and validate it through comparisons with numerical SVD computations of the propagation channel. The results provide both practical tools and physical insight for the design and analysis of high-capacity communication and sensing systems.\",\"PeriodicalId\":73295,\"journal\":{\"name\":\"IEEE journal on selected areas in information theory\",\"volume\":\"6 \",\"pages\":\"325-337\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in information theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11130506/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11130506/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通信信道中的自由度(NDoF)从根本上限制了可用于发送和接收信息的独立空间模式的数量。尽管可以使用信道算子的奇异值分解(SVD)对特定配置进行数值计算,但这种方法提供的物理洞察力有限。本文介绍了在自由空间中任意形状的发射端和接收端之间的nof的一种简单的解析估计方法。在较大的电极限下,NDoF较高的地方,可以用相互阴影面积很好地近似,以波长平方为单位测量。该区域对应于区域的投影重叠,整合在所有视线上,并捕获它们的有效空间耦合。提出的估计推广和统一了几个先前建立的结果,包括基于Weyl定律、阴影面积和近轴近似的结果。我们分析了几个示例配置来说明估计的准确性,并通过与传播信道的SVD数值计算的比较来验证它。研究结果为高容量通信和传感系统的设计和分析提供了实用工具和物理见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shadow Area and Degrees of Freedom for Free-Space Communication
The number of degrees of freedom (NDoF) in a communication channel fundamentally limits the number of independent spatial modes available for transmitting and receiving information. Although the NDoF can be computed numerically for specific configurations using singular value decomposition (SVD) of the channel operator, this approach provides limited physical insight. In this paper, we introduce a simple analytical estimate for the NDoF between arbitrarily shaped transmitter and receiver regions in free space. In the electrically large limit, where the NDoF is high, it is well approximated by the mutual shadow area, measured in units of wavelength squared. This area corresponds to the projected overlap of the regions, integrated over all lines of sight, and captures their effective spatial coupling. The proposed estimate generalizes and unifies several previously established results, including those based on Weyl’s law, shadow area, and the paraxial approximation. We analyze several example configurations to illustrate the accuracy of the estimate and validate it through comparisons with numerical SVD computations of the propagation channel. The results provide both practical tools and physical insight for the design and analysis of high-capacity communication and sensing systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信