基于图感知的高光谱图像分类混合编码

IF 4.4
Yuquan Gan;Siyu Wu;Xingyu Li;Zhijie Xu;Yushan Pan
{"title":"基于图感知的高光谱图像分类混合编码","authors":"Yuquan Gan;Siyu Wu;Xingyu Li;Zhijie Xu;Yushan Pan","doi":"10.1109/LGRS.2025.3605916","DOIUrl":null,"url":null,"abstract":"Hyperspectral image (HSI) classification faces critical challenges in effectively modeling the intricate spectral–spatial structures and non-Euclidean relationships. Traditional methods often struggle to simultaneously capture local details, global contextual dependencies, and graph-structured correlations, leading to limited classification accuracy. To address the above issues, this letter proposes a graph-aware hybrid encoding (GAHE) framework. To fully exploit the spectral–spatial characteristics and graph structural dependencies inherent in HSI, the proposed method is structured into three key components: a multiscale selective graph-aware attention (MSGA) module, a hybrid projection encoding module, and a graph sensitive aggregation (GSA) module. The three modules work in a complementary manner to progressively refine and enhance feature representations across multiple scales and modalities. Compared with advanced classification methods, the experimental results demonstrate that the proposed GAHE method shows better classification performance.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph-Aware Hybrid Encoding for Hyperspectral Image Classification\",\"authors\":\"Yuquan Gan;Siyu Wu;Xingyu Li;Zhijie Xu;Yushan Pan\",\"doi\":\"10.1109/LGRS.2025.3605916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral image (HSI) classification faces critical challenges in effectively modeling the intricate spectral–spatial structures and non-Euclidean relationships. Traditional methods often struggle to simultaneously capture local details, global contextual dependencies, and graph-structured correlations, leading to limited classification accuracy. To address the above issues, this letter proposes a graph-aware hybrid encoding (GAHE) framework. To fully exploit the spectral–spatial characteristics and graph structural dependencies inherent in HSI, the proposed method is structured into three key components: a multiscale selective graph-aware attention (MSGA) module, a hybrid projection encoding module, and a graph sensitive aggregation (GSA) module. The three modules work in a complementary manner to progressively refine and enhance feature representations across multiple scales and modalities. Compared with advanced classification methods, the experimental results demonstrate that the proposed GAHE method shows better classification performance.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11151591/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11151591/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高光谱图像(HSI)分类面临着有效建模复杂的光谱空间结构和非欧几里得关系的关键挑战。传统方法通常难以同时捕获局部细节、全局上下文依赖关系和图结构相关性,从而导致分类精度有限。为了解决上述问题,本文提出了一个图形感知混合编码(GAHE)框架。为了充分利用HSI固有的光谱空间特征和图结构依赖性,该方法被构建成三个关键组件:多尺度选择性图感知注意(MSGA)模块、混合投影编码模块和图敏感聚合(GSA)模块。这三个模块以互补的方式工作,逐步细化和增强跨多个尺度和模式的特征表示。实验结果表明,本文提出的GAHE方法具有较好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph-Aware Hybrid Encoding for Hyperspectral Image Classification
Hyperspectral image (HSI) classification faces critical challenges in effectively modeling the intricate spectral–spatial structures and non-Euclidean relationships. Traditional methods often struggle to simultaneously capture local details, global contextual dependencies, and graph-structured correlations, leading to limited classification accuracy. To address the above issues, this letter proposes a graph-aware hybrid encoding (GAHE) framework. To fully exploit the spectral–spatial characteristics and graph structural dependencies inherent in HSI, the proposed method is structured into three key components: a multiscale selective graph-aware attention (MSGA) module, a hybrid projection encoding module, and a graph sensitive aggregation (GSA) module. The three modules work in a complementary manner to progressively refine and enhance feature representations across multiple scales and modalities. Compared with advanced classification methods, the experimental results demonstrate that the proposed GAHE method shows better classification performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信