Meng He , Tatiane Weimann , Alexandre Molter , Jairo Valões de Alencar Ramalho , Daniel Milbrath De Leon
{"title":"基于声黑洞的压电材料和结构的能量转换分析","authors":"Meng He , Tatiane Weimann , Alexandre Molter , Jairo Valões de Alencar Ramalho , Daniel Milbrath De Leon","doi":"10.1016/j.finel.2025.104454","DOIUrl":null,"url":null,"abstract":"<div><div>The objective of this study is to analyze energy conversion in two configurations of piezoelectric material placement in acoustic black holes. These structures concentrate vibrational energy due to the gradual reduction in thickness, making them ideal for energy harvesting. In the first configuration, piezoelectric materials are placed at the outer edges of the hole; in the second, at the inner edges. The material is applied only to specific regions, rather than covering the entire inner or outer edge. The same amount of piezoelectric material is used in both cases, being able to act as both a vibration damper and an energy harvester. This study investigates the optimal position for piezoelectric material placement, comparing energy conversion at the outer vs. inner edges of a central elliptical hole. The finite element method was used to discretize the structural domain, considering elliptical hole geometries. Dynamic structural analysis was applied to compute energy distributions and conversions. The results showed that the placement of the piezoelectric material influences energy conversion, with the most suitable position being along the outer edge of the hole. These findings reinforce the importance of optimal piezoelectric placement for maximizing energy harvesting in structures with acoustic black holes.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"252 ","pages":"Article 104454"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of energy conversion using piezoelectric materials and structures with acoustic black holes\",\"authors\":\"Meng He , Tatiane Weimann , Alexandre Molter , Jairo Valões de Alencar Ramalho , Daniel Milbrath De Leon\",\"doi\":\"10.1016/j.finel.2025.104454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The objective of this study is to analyze energy conversion in two configurations of piezoelectric material placement in acoustic black holes. These structures concentrate vibrational energy due to the gradual reduction in thickness, making them ideal for energy harvesting. In the first configuration, piezoelectric materials are placed at the outer edges of the hole; in the second, at the inner edges. The material is applied only to specific regions, rather than covering the entire inner or outer edge. The same amount of piezoelectric material is used in both cases, being able to act as both a vibration damper and an energy harvester. This study investigates the optimal position for piezoelectric material placement, comparing energy conversion at the outer vs. inner edges of a central elliptical hole. The finite element method was used to discretize the structural domain, considering elliptical hole geometries. Dynamic structural analysis was applied to compute energy distributions and conversions. The results showed that the placement of the piezoelectric material influences energy conversion, with the most suitable position being along the outer edge of the hole. These findings reinforce the importance of optimal piezoelectric placement for maximizing energy harvesting in structures with acoustic black holes.</div></div>\",\"PeriodicalId\":56133,\"journal\":{\"name\":\"Finite Elements in Analysis and Design\",\"volume\":\"252 \",\"pages\":\"Article 104454\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Elements in Analysis and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168874X2500143X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X2500143X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Analysis of energy conversion using piezoelectric materials and structures with acoustic black holes
The objective of this study is to analyze energy conversion in two configurations of piezoelectric material placement in acoustic black holes. These structures concentrate vibrational energy due to the gradual reduction in thickness, making them ideal for energy harvesting. In the first configuration, piezoelectric materials are placed at the outer edges of the hole; in the second, at the inner edges. The material is applied only to specific regions, rather than covering the entire inner or outer edge. The same amount of piezoelectric material is used in both cases, being able to act as both a vibration damper and an energy harvester. This study investigates the optimal position for piezoelectric material placement, comparing energy conversion at the outer vs. inner edges of a central elliptical hole. The finite element method was used to discretize the structural domain, considering elliptical hole geometries. Dynamic structural analysis was applied to compute energy distributions and conversions. The results showed that the placement of the piezoelectric material influences energy conversion, with the most suitable position being along the outer edge of the hole. These findings reinforce the importance of optimal piezoelectric placement for maximizing energy harvesting in structures with acoustic black holes.
期刊介绍:
The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.