{"title":"IRTF:一种新的不规则多维数据恢复张量分解方法","authors":"Jin-Yu Xie , Hao Zhang , Xi-Le Zhao , Yi-Si Luo","doi":"10.1016/j.knosys.2025.114372","DOIUrl":null,"url":null,"abstract":"<div><div>Tensor factorizations, although serving as paramount tools for exploiting prior knowledge of multidimensional data, are unsuitable for emerging irregular multidimensional data with the arbitrary shape spatial domain (i.e., spatial-irregular tensor), such as superpixels and spatial transcriptomics. Developing new tensor factorizations suitable for spatial-irregular tensors poses a compelling challenge. To meet this challenge, we introduce a novel Irregular Tensor Factorization (IRTF), which can fully capture the intrinsic spatial and channel information behind the spatial-irregular tensor. Concretely, a spatial-irregular tensor can be decomposed into the product of an intrinsic regular tensor, learnable channel transform matrices, and a learnable spatial transform matrix. Accompanying IRTF, we suggest the Total Variation on Channel and Spatial Transforms (TV-CST) to exploit the local information of spatial-irregular tensors, which is hardly excavated by traditional total variation methods. Combining the proposed IRTF and TV-CST, we built a spatial-irregular tensor recovery model. Extensive experiments on real-world spatial-irregular tensors demonstrate the promising performance of our IRTF and its significant advantages on downstream tasks.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"330 ","pages":"Article 114372"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IRTF: A new tensor factorization for irregular multidimensional data recovery\",\"authors\":\"Jin-Yu Xie , Hao Zhang , Xi-Le Zhao , Yi-Si Luo\",\"doi\":\"10.1016/j.knosys.2025.114372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tensor factorizations, although serving as paramount tools for exploiting prior knowledge of multidimensional data, are unsuitable for emerging irregular multidimensional data with the arbitrary shape spatial domain (i.e., spatial-irregular tensor), such as superpixels and spatial transcriptomics. Developing new tensor factorizations suitable for spatial-irregular tensors poses a compelling challenge. To meet this challenge, we introduce a novel Irregular Tensor Factorization (IRTF), which can fully capture the intrinsic spatial and channel information behind the spatial-irregular tensor. Concretely, a spatial-irregular tensor can be decomposed into the product of an intrinsic regular tensor, learnable channel transform matrices, and a learnable spatial transform matrix. Accompanying IRTF, we suggest the Total Variation on Channel and Spatial Transforms (TV-CST) to exploit the local information of spatial-irregular tensors, which is hardly excavated by traditional total variation methods. Combining the proposed IRTF and TV-CST, we built a spatial-irregular tensor recovery model. Extensive experiments on real-world spatial-irregular tensors demonstrate the promising performance of our IRTF and its significant advantages on downstream tasks.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":\"330 \",\"pages\":\"Article 114372\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095070512501411X\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095070512501411X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
IRTF: A new tensor factorization for irregular multidimensional data recovery
Tensor factorizations, although serving as paramount tools for exploiting prior knowledge of multidimensional data, are unsuitable for emerging irregular multidimensional data with the arbitrary shape spatial domain (i.e., spatial-irregular tensor), such as superpixels and spatial transcriptomics. Developing new tensor factorizations suitable for spatial-irregular tensors poses a compelling challenge. To meet this challenge, we introduce a novel Irregular Tensor Factorization (IRTF), which can fully capture the intrinsic spatial and channel information behind the spatial-irregular tensor. Concretely, a spatial-irregular tensor can be decomposed into the product of an intrinsic regular tensor, learnable channel transform matrices, and a learnable spatial transform matrix. Accompanying IRTF, we suggest the Total Variation on Channel and Spatial Transforms (TV-CST) to exploit the local information of spatial-irregular tensors, which is hardly excavated by traditional total variation methods. Combining the proposed IRTF and TV-CST, we built a spatial-irregular tensor recovery model. Extensive experiments on real-world spatial-irregular tensors demonstrate the promising performance of our IRTF and its significant advantages on downstream tasks.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.