无粘结剂的双功能金属保护石墨烯- al2o3复合涂层

IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuebin Chen , Hongwei Xie , Mingzhuang Liu , Pengfei Li , Haowei Huang , Huijuan Zhang , Junyan Gao , Xia Zhao , Hong-Guang Piao , Yanliang Huang
{"title":"无粘结剂的双功能金属保护石墨烯- al2o3复合涂层","authors":"Yuebin Chen ,&nbsp;Hongwei Xie ,&nbsp;Mingzhuang Liu ,&nbsp;Pengfei Li ,&nbsp;Haowei Huang ,&nbsp;Huijuan Zhang ,&nbsp;Junyan Gao ,&nbsp;Xia Zhao ,&nbsp;Hong-Guang Piao ,&nbsp;Yanliang Huang","doi":"10.1016/j.jmrt.2025.09.107","DOIUrl":null,"url":null,"abstract":"<div><div>Conductive anticorrosion coatings are critical for protecting metal infrastructure in power systems. However, integrating high conductivity with durable corrosion resistance—especially in binder-free systems—remains challenging, as conventional polymer binders often hinder charge transport and degrade structural stability. Here, we present a binder-free graphene-Al<sub>2</sub>O<sub>3</sub> composite coating prepared via a synergistic electrodeposition–electrophoresis strategy. In this architecture, graphene nanosheets form a continuous conductive network on Q235 carbon steel, while Al<sub>2</sub>O<sub>3</sub> nanoparticles enhance corrosion resistance by strengthening the barrier effect. Electrochemical analysis reveals that the optimized coating (1000 s deposition) lowers corrosion current density by 66 % and increases polarization resistance nearly fourfold, compared to bare steel. Notably, the coating maintains metallic-level conductivity (3.72 × 10<sup>6</sup> S/m), with only a 2.26 % reduction from the uncoated substrate. These results highlight the dual-functional performance of the graphene-Al<sub>2</sub>O<sub>3</sub> system and offer a promising route toward next-generation conductive anticorrosion coatings for energy and infrastructure applications.</div></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"39 ","pages":"Pages 576-584"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A binder-free Graphene-Al2O3 composite coating for dual-Function metal protection\",\"authors\":\"Yuebin Chen ,&nbsp;Hongwei Xie ,&nbsp;Mingzhuang Liu ,&nbsp;Pengfei Li ,&nbsp;Haowei Huang ,&nbsp;Huijuan Zhang ,&nbsp;Junyan Gao ,&nbsp;Xia Zhao ,&nbsp;Hong-Guang Piao ,&nbsp;Yanliang Huang\",\"doi\":\"10.1016/j.jmrt.2025.09.107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Conductive anticorrosion coatings are critical for protecting metal infrastructure in power systems. However, integrating high conductivity with durable corrosion resistance—especially in binder-free systems—remains challenging, as conventional polymer binders often hinder charge transport and degrade structural stability. Here, we present a binder-free graphene-Al<sub>2</sub>O<sub>3</sub> composite coating prepared via a synergistic electrodeposition–electrophoresis strategy. In this architecture, graphene nanosheets form a continuous conductive network on Q235 carbon steel, while Al<sub>2</sub>O<sub>3</sub> nanoparticles enhance corrosion resistance by strengthening the barrier effect. Electrochemical analysis reveals that the optimized coating (1000 s deposition) lowers corrosion current density by 66 % and increases polarization resistance nearly fourfold, compared to bare steel. Notably, the coating maintains metallic-level conductivity (3.72 × 10<sup>6</sup> S/m), with only a 2.26 % reduction from the uncoated substrate. These results highlight the dual-functional performance of the graphene-Al<sub>2</sub>O<sub>3</sub> system and offer a promising route toward next-generation conductive anticorrosion coatings for energy and infrastructure applications.</div></div>\",\"PeriodicalId\":54332,\"journal\":{\"name\":\"Journal of Materials Research and Technology-Jmr&t\",\"volume\":\"39 \",\"pages\":\"Pages 576-584\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology-Jmr&t\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2238785425023610\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785425023610","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

导电防腐涂料对于保护电力系统中的金属基础设施至关重要。然而,将高导电性与持久的耐腐蚀性结合起来,特别是在无粘合剂的体系中,仍然具有挑战性,因为传统的聚合物粘合剂通常会阻碍电荷传输并降低结构稳定性。在这里,我们提出了一种通过协同电沉积-电泳策略制备的无粘结剂石墨烯- al2o3复合涂层。在这种结构中,石墨烯纳米片在Q235碳钢上形成连续的导电网络,而Al2O3纳米颗粒通过增强屏障效应来增强耐腐蚀性。电化学分析表明,与裸钢相比,优化后的涂层(1000 s沉积)使腐蚀电流密度降低了66%,极化电阻提高了近4倍。值得注意的是,涂层保持了金属级电导率(3.72 × 106 S/m),仅比未涂层的基体降低了2.26%。这些结果突出了石墨烯- al2o3体系的双功能性能,为能源和基础设施应用的下一代导电防腐涂层提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A binder-free Graphene-Al2O3 composite coating for dual-Function metal protection
Conductive anticorrosion coatings are critical for protecting metal infrastructure in power systems. However, integrating high conductivity with durable corrosion resistance—especially in binder-free systems—remains challenging, as conventional polymer binders often hinder charge transport and degrade structural stability. Here, we present a binder-free graphene-Al2O3 composite coating prepared via a synergistic electrodeposition–electrophoresis strategy. In this architecture, graphene nanosheets form a continuous conductive network on Q235 carbon steel, while Al2O3 nanoparticles enhance corrosion resistance by strengthening the barrier effect. Electrochemical analysis reveals that the optimized coating (1000 s deposition) lowers corrosion current density by 66 % and increases polarization resistance nearly fourfold, compared to bare steel. Notably, the coating maintains metallic-level conductivity (3.72 × 106 S/m), with only a 2.26 % reduction from the uncoated substrate. These results highlight the dual-functional performance of the graphene-Al2O3 system and offer a promising route toward next-generation conductive anticorrosion coatings for energy and infrastructure applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Research and Technology-Jmr&t
Journal of Materials Research and Technology-Jmr&t Materials Science-Metals and Alloys
CiteScore
8.80
自引率
9.40%
发文量
1877
审稿时长
35 days
期刊介绍: The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信