Al-Mg-Si合金中β″沉淀的多尺度稳定机制:Mg5Al2Si4通过热力学-力学-界面协同作用的优势

IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hong Mao , Jingwen Pan , Zhuoliang Yu , Jiaming Liu , Zhuowei Xiao , Yuman Zhu , Yinxing Hu , Xiaohong Zhang , Yong Du
{"title":"Al-Mg-Si合金中β″沉淀的多尺度稳定机制:Mg5Al2Si4通过热力学-力学-界面协同作用的优势","authors":"Hong Mao ,&nbsp;Jingwen Pan ,&nbsp;Zhuoliang Yu ,&nbsp;Jiaming Liu ,&nbsp;Zhuowei Xiao ,&nbsp;Yuman Zhu ,&nbsp;Yinxing Hu ,&nbsp;Xiaohong Zhang ,&nbsp;Yong Du","doi":"10.1016/j.jmrt.2025.09.030","DOIUrl":null,"url":null,"abstract":"<div><div>Investigating the intrinsic characteristics of Al-containing precipitates in age-hardenable aluminum alloys and exploring their synergistic interactions with dislocations, interfaces, and the aluminum matrix represents a cutting-edge strategy for designing lightweight, high-strength aluminum alloys. This study elucidates the stability competition mechanisms among β″ precipitates (Mg<sub>5</sub>Si<sub>6</sub>, Mg<sub>5</sub>Al<sub>2</sub>S<sub>i4</sub>, and Mg<sub>4</sub>Al<sub>3</sub>Si<sub>4</sub>) in Al–Mg–Si alloys through multiscale computational analyses. First-principles calculations reveal that Mg<sub>5</sub>Al<sub>2</sub>Si<sub>4</sub> exhibits superior thermodynamic stability, as evidenced by its minimized formation enthalpy and negative cohesive energy, which govern spontaneous nucleation and coarsening resistance. Furthermore, Mg<sub>5</sub>Al<sub>2</sub>Si<sub>4</sub> demonstrates optimal mechanical properties, including shear modulus, Young's modulus, and Pugh ratio, synergistically enabling enhanced dislocation pinning capability and balanced strength-ductility synergy. Notably, interfacial analysis indicates that Mg<sub>5</sub>Al<sub>2</sub>Si<sub>4</sub> effectively suppresses interfacial decohesion by stabilizing semi-coherent interfaces through the lowest interfacial energy and highest adhesion work among the studied phases. In contrast, Mg<sub>5</sub>Si<sub>6</sub> exhibits inferior stability, functioning merely as a transient metastable precursor during aging. These findings establish Mg<sub>5</sub>Al<sub>2</sub>Si<sub>4</sub> as the dominant strengthening phase in peak-aged conditions. By constructing a multiscale correlation framework integrating thermodynamic, mechanical, and interfacial properties, this work provides a universal paradigm for the design of precipitation-strengthened aluminum alloys.</div></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"39 ","pages":"Pages 145-153"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale stabilization mechanisms of β″ precipitates in Al–Mg–Si alloys: Mg5Al2Si4 dominance through thermodynamic-mechanical-interfacial synergy\",\"authors\":\"Hong Mao ,&nbsp;Jingwen Pan ,&nbsp;Zhuoliang Yu ,&nbsp;Jiaming Liu ,&nbsp;Zhuowei Xiao ,&nbsp;Yuman Zhu ,&nbsp;Yinxing Hu ,&nbsp;Xiaohong Zhang ,&nbsp;Yong Du\",\"doi\":\"10.1016/j.jmrt.2025.09.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Investigating the intrinsic characteristics of Al-containing precipitates in age-hardenable aluminum alloys and exploring their synergistic interactions with dislocations, interfaces, and the aluminum matrix represents a cutting-edge strategy for designing lightweight, high-strength aluminum alloys. This study elucidates the stability competition mechanisms among β″ precipitates (Mg<sub>5</sub>Si<sub>6</sub>, Mg<sub>5</sub>Al<sub>2</sub>S<sub>i4</sub>, and Mg<sub>4</sub>Al<sub>3</sub>Si<sub>4</sub>) in Al–Mg–Si alloys through multiscale computational analyses. First-principles calculations reveal that Mg<sub>5</sub>Al<sub>2</sub>Si<sub>4</sub> exhibits superior thermodynamic stability, as evidenced by its minimized formation enthalpy and negative cohesive energy, which govern spontaneous nucleation and coarsening resistance. Furthermore, Mg<sub>5</sub>Al<sub>2</sub>Si<sub>4</sub> demonstrates optimal mechanical properties, including shear modulus, Young's modulus, and Pugh ratio, synergistically enabling enhanced dislocation pinning capability and balanced strength-ductility synergy. Notably, interfacial analysis indicates that Mg<sub>5</sub>Al<sub>2</sub>Si<sub>4</sub> effectively suppresses interfacial decohesion by stabilizing semi-coherent interfaces through the lowest interfacial energy and highest adhesion work among the studied phases. In contrast, Mg<sub>5</sub>Si<sub>6</sub> exhibits inferior stability, functioning merely as a transient metastable precursor during aging. These findings establish Mg<sub>5</sub>Al<sub>2</sub>Si<sub>4</sub> as the dominant strengthening phase in peak-aged conditions. By constructing a multiscale correlation framework integrating thermodynamic, mechanical, and interfacial properties, this work provides a universal paradigm for the design of precipitation-strengthened aluminum alloys.</div></div>\",\"PeriodicalId\":54332,\"journal\":{\"name\":\"Journal of Materials Research and Technology-Jmr&t\",\"volume\":\"39 \",\"pages\":\"Pages 145-153\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology-Jmr&t\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2238785425022847\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785425022847","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究时效硬化铝合金中含al析出相的内在特征,并探索它们与位错、界面和铝基体之间的协同作用,是设计轻量化、高强度铝合金的前沿策略。本研究通过多尺度计算分析阐明了Al-Mg-Si合金中β″相(Mg5Si6、Mg5Al2Si4和Mg4Al3Si4)的稳定性竞争机制。第一性原理计算表明,Mg5Al2Si4具有优异的热力学稳定性,其最小的形成焓和负的内聚能决定了自发成核和抗粗化能力。此外,Mg5Al2Si4表现出最佳的力学性能,包括剪切模量、杨氏模量和Pugh比,协同增强了位错钉住能力和平衡的强度-塑性协同作用。值得注意的是,界面分析表明,Mg5Al2Si4通过最低的界面能和最高的粘附功来稳定半相干界面,从而有效地抑制了界面脱黏。相反,Mg5Si6表现出较差的稳定性,在老化过程中仅作为瞬态亚稳态前体发挥作用。这些发现确定了Mg5Al2Si4是峰时效条件下的主要强化相。通过构建一个集热力学、力学和界面性能于一体的多尺度关联框架,本工作为析出强化铝合金的设计提供了一个通用的范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale stabilization mechanisms of β″ precipitates in Al–Mg–Si alloys: Mg5Al2Si4 dominance through thermodynamic-mechanical-interfacial synergy
Investigating the intrinsic characteristics of Al-containing precipitates in age-hardenable aluminum alloys and exploring their synergistic interactions with dislocations, interfaces, and the aluminum matrix represents a cutting-edge strategy for designing lightweight, high-strength aluminum alloys. This study elucidates the stability competition mechanisms among β″ precipitates (Mg5Si6, Mg5Al2Si4, and Mg4Al3Si4) in Al–Mg–Si alloys through multiscale computational analyses. First-principles calculations reveal that Mg5Al2Si4 exhibits superior thermodynamic stability, as evidenced by its minimized formation enthalpy and negative cohesive energy, which govern spontaneous nucleation and coarsening resistance. Furthermore, Mg5Al2Si4 demonstrates optimal mechanical properties, including shear modulus, Young's modulus, and Pugh ratio, synergistically enabling enhanced dislocation pinning capability and balanced strength-ductility synergy. Notably, interfacial analysis indicates that Mg5Al2Si4 effectively suppresses interfacial decohesion by stabilizing semi-coherent interfaces through the lowest interfacial energy and highest adhesion work among the studied phases. In contrast, Mg5Si6 exhibits inferior stability, functioning merely as a transient metastable precursor during aging. These findings establish Mg5Al2Si4 as the dominant strengthening phase in peak-aged conditions. By constructing a multiscale correlation framework integrating thermodynamic, mechanical, and interfacial properties, this work provides a universal paradigm for the design of precipitation-strengthened aluminum alloys.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Research and Technology-Jmr&t
Journal of Materials Research and Technology-Jmr&t Materials Science-Metals and Alloys
CiteScore
8.80
自引率
9.40%
发文量
1877
审稿时长
35 days
期刊介绍: The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信