Devi Priya V.S. , Sibi Chakkaravarthy Sethuraman , Muhammad Khurram Khan
{"title":"工业控制系统中基于区块链的入侵检测深度学习模型:框架和开放问题","authors":"Devi Priya V.S. , Sibi Chakkaravarthy Sethuraman , Muhammad Khurram Khan","doi":"10.1016/j.jnca.2025.104286","DOIUrl":null,"url":null,"abstract":"<div><div>Critical infrastructure and industrial systems are both becoming more and more networked and equipped with computing and communications tools. To manage processes and automate them where possible, Industrial Control Systems (ICS) manage a variety of components, including monitoring tools and software platforms. More complicated data is now being run on the networks, including data(past), money(present), and brains (future). In order to predictably detect specific services and patterns (deep learning) and automatically check authenticity and transfer value (blockchain), deep learning and blockchain are integrated into the ICS network. Hence, we conducted a thorough examination of the models published in the literature in order to comprehend how to integrate machine learning and blockchain efficiently and successfully for intrusion detection services. We also provide useful guidance for future research in this area by noting significant issues that must be addressed before substantial deployments of IDS models in ICS.</div></div>","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"243 ","pages":"Article 104286"},"PeriodicalIF":8.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blockchain-based Deep Learning Models for Intrusion Detection in Industrial Control Systems: Frameworks and Open Issues\",\"authors\":\"Devi Priya V.S. , Sibi Chakkaravarthy Sethuraman , Muhammad Khurram Khan\",\"doi\":\"10.1016/j.jnca.2025.104286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Critical infrastructure and industrial systems are both becoming more and more networked and equipped with computing and communications tools. To manage processes and automate them where possible, Industrial Control Systems (ICS) manage a variety of components, including monitoring tools and software platforms. More complicated data is now being run on the networks, including data(past), money(present), and brains (future). In order to predictably detect specific services and patterns (deep learning) and automatically check authenticity and transfer value (blockchain), deep learning and blockchain are integrated into the ICS network. Hence, we conducted a thorough examination of the models published in the literature in order to comprehend how to integrate machine learning and blockchain efficiently and successfully for intrusion detection services. We also provide useful guidance for future research in this area by noting significant issues that must be addressed before substantial deployments of IDS models in ICS.</div></div>\",\"PeriodicalId\":54784,\"journal\":{\"name\":\"Journal of Network and Computer Applications\",\"volume\":\"243 \",\"pages\":\"Article 104286\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Network and Computer Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1084804525001833\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084804525001833","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Blockchain-based Deep Learning Models for Intrusion Detection in Industrial Control Systems: Frameworks and Open Issues
Critical infrastructure and industrial systems are both becoming more and more networked and equipped with computing and communications tools. To manage processes and automate them where possible, Industrial Control Systems (ICS) manage a variety of components, including monitoring tools and software platforms. More complicated data is now being run on the networks, including data(past), money(present), and brains (future). In order to predictably detect specific services and patterns (deep learning) and automatically check authenticity and transfer value (blockchain), deep learning and blockchain are integrated into the ICS network. Hence, we conducted a thorough examination of the models published in the literature in order to comprehend how to integrate machine learning and blockchain efficiently and successfully for intrusion detection services. We also provide useful guidance for future research in this area by noting significant issues that must be addressed before substantial deployments of IDS models in ICS.
期刊介绍:
The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.