{"title":"k-SPEP的混合时间和截止时间","authors":"Eyob Tsegaye","doi":"10.1016/j.spa.2025.104776","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the mixing time of the capacity <span><math><mi>k</mi></math></span> symmetric partial exclusion process of Schütz and Sandow with <span><math><mi>m</mi></math></span> particles on a segment of length <span><math><mi>N</mi></math></span>, and we show that this process exhibits cutoff at time <span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>k</mi><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><msup><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>log</mo><mi>m</mi></mrow></math></span>. We also introduce a related complete multi-species process that we call the <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>N</mi></mrow></msub></math></span> shuffle and show that this process exhibits cutoff at time <span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>k</mi><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><msup><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>log</mo><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span>. This extends the celebrated result of Lacoin, which proved cutoff for the symmetric simple exclusion process on a segment of length <span><math><mi>N</mi></math></span> and the adjacent transposition shuffle.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"191 ","pages":"Article 104776"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixing time and cutoff for the k-SPEP\",\"authors\":\"Eyob Tsegaye\",\"doi\":\"10.1016/j.spa.2025.104776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the mixing time of the capacity <span><math><mi>k</mi></math></span> symmetric partial exclusion process of Schütz and Sandow with <span><math><mi>m</mi></math></span> particles on a segment of length <span><math><mi>N</mi></math></span>, and we show that this process exhibits cutoff at time <span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>k</mi><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><msup><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>log</mo><mi>m</mi></mrow></math></span>. We also introduce a related complete multi-species process that we call the <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>N</mi></mrow></msub></math></span> shuffle and show that this process exhibits cutoff at time <span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>k</mi><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><msup><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>log</mo><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span>. This extends the celebrated result of Lacoin, which proved cutoff for the symmetric simple exclusion process on a segment of length <span><math><mi>N</mi></math></span> and the adjacent transposition shuffle.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"191 \",\"pages\":\"Article 104776\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414925002200\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925002200","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
We investigate the mixing time of the capacity symmetric partial exclusion process of Schütz and Sandow with particles on a segment of length , and we show that this process exhibits cutoff at time . We also introduce a related complete multi-species process that we call the shuffle and show that this process exhibits cutoff at time . This extends the celebrated result of Lacoin, which proved cutoff for the symmetric simple exclusion process on a segment of length and the adjacent transposition shuffle.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.