具有强不饱和方的几乎Kurepa Suslin树

IF 1.5 1区 数学 Q1 MATHEMATICS
John Krueger, Eduardo Martinez Mendoza
{"title":"具有强不饱和方的几乎Kurepa Suslin树","authors":"John Krueger,&nbsp;Eduardo Martinez Mendoza","doi":"10.1016/j.aim.2025.110540","DOIUrl":null,"url":null,"abstract":"<div><div>For uncountable downwards closed subtrees <em>U</em> and <em>W</em> of an <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-tree <em>T</em>, we say that <em>U</em> and <em>W</em> are <em>strongly almost disjoint</em> if their intersection is a finite union of countable chains. The tree <em>T</em> is <em>strongly non-saturated</em> if there exists a strongly almost disjoint family of <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-many uncountable downwards closed subtrees of <em>T</em>. In this article we construct a Knaster forcing which adds a Suslin tree together with a family of <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-many strongly almost disjoint automorphisms of it (and thus the square of the Suslin tree is strongly non-saturated). To achieve this goal, we introduce a new idea called <em>ρ-separation</em>, which is an adaptation to the finite context of the notion of separation which was recently introduced by Stejskalová and the first author for the purpose of adding automorphisms of a tree with a forcing with countable conditions.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"481 ","pages":"Article 110540"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An almost Kurepa Suslin tree with strongly non-saturated square\",\"authors\":\"John Krueger,&nbsp;Eduardo Martinez Mendoza\",\"doi\":\"10.1016/j.aim.2025.110540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For uncountable downwards closed subtrees <em>U</em> and <em>W</em> of an <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-tree <em>T</em>, we say that <em>U</em> and <em>W</em> are <em>strongly almost disjoint</em> if their intersection is a finite union of countable chains. The tree <em>T</em> is <em>strongly non-saturated</em> if there exists a strongly almost disjoint family of <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-many uncountable downwards closed subtrees of <em>T</em>. In this article we construct a Knaster forcing which adds a Suslin tree together with a family of <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-many strongly almost disjoint automorphisms of it (and thus the square of the Suslin tree is strongly non-saturated). To achieve this goal, we introduce a new idea called <em>ρ-separation</em>, which is an adaptation to the finite context of the notion of separation which was recently introduced by Stejskalová and the first author for the purpose of adding automorphisms of a tree with a forcing with countable conditions.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"481 \",\"pages\":\"Article 110540\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825004384\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004384","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于ω1树T的不可数下闭子树U和W,如果U和W的交是可数链的有限并,我们说它们是强几乎不相交的。在本文中,我们构造了一个Knaster强迫,它将一个Suslin树和它的一个ω2-许多强几乎不相交自同构的族加在一起(因此Suslin树的平方是强不饱和的)。为了实现这一目标,我们引入了一个新的思想,称为ρ-分离,它是对最近由stejskalov和第一作者引入的分离概念的有限背景的适应,目的是添加具有可数条件的强迫的树的自同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An almost Kurepa Suslin tree with strongly non-saturated square
For uncountable downwards closed subtrees U and W of an ω1-tree T, we say that U and W are strongly almost disjoint if their intersection is a finite union of countable chains. The tree T is strongly non-saturated if there exists a strongly almost disjoint family of ω2-many uncountable downwards closed subtrees of T. In this article we construct a Knaster forcing which adds a Suslin tree together with a family of ω2-many strongly almost disjoint automorphisms of it (and thus the square of the Suslin tree is strongly non-saturated). To achieve this goal, we introduce a new idea called ρ-separation, which is an adaptation to the finite context of the notion of separation which was recently introduced by Stejskalová and the first author for the purpose of adding automorphisms of a tree with a forcing with countable conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信