Jonathan H. Brown , Lisa Orloff Clark , Adam H. Fuller
{"title":"环上Cartan嵌入的中间子代数与C*-代数","authors":"Jonathan H. Brown , Lisa Orloff Clark , Adam H. Fuller","doi":"10.1016/j.aim.2025.110534","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>D</mi><mo>⊆</mo><mi>A</mi></math></span> be a quasi-Cartan pair of algebras. Then there exists a unique discrete groupoid twist <span><math><mi>Σ</mi><mo>→</mo><mi>G</mi></math></span> whose twisted Steinberg algebra is isomorphic to <em>A</em> in a way that preserves <em>D</em>. In this paper, we show there is a lattice isomorphism between wide open subgroupoids of <em>G</em> and subalgebras <em>C</em> such that <span><math><mi>D</mi><mo>⊆</mo><mi>C</mi><mo>⊆</mo><mi>A</mi></math></span> and <span><math><mi>D</mi><mo>⊆</mo><mi>C</mi></math></span> is a quasi-Cartan pair. We also characterize which algebraic diagonal/algebraic Cartan/quasi-Cartan pairs have the property that every subalgebra <em>C</em> with <span><math><mi>D</mi><mo>⊆</mo><mi>C</mi><mo>⊆</mo><mi>A</mi></math></span> has <span><math><mi>D</mi><mo>⊆</mo><mi>C</mi></math></span> a diagonal/Cartan/quasi-Cartan pair. In the diagonal case, when the coefficient ring is a field, it is all of them. Beyond that, only pairs that are close to being diagonal have this property. We then apply our techniques to C*-algebraic inclusions and give a complete characterization of which Cartan pairs <span><math><mi>D</mi><mo>⊆</mo><mi>A</mi></math></span> have the property that every C*-subalgebra <em>C</em> with <span><math><mi>D</mi><mo>⊆</mo><mi>C</mi><mo>⊆</mo><mi>A</mi></math></span> has <span><math><mi>D</mi><mo>⊆</mo><mi>C</mi></math></span> a Cartan pair.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"481 ","pages":"Article 110534"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intermediate subalgebras of Cartan embeddings in rings and C*-algebras\",\"authors\":\"Jonathan H. Brown , Lisa Orloff Clark , Adam H. Fuller\",\"doi\":\"10.1016/j.aim.2025.110534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>D</mi><mo>⊆</mo><mi>A</mi></math></span> be a quasi-Cartan pair of algebras. Then there exists a unique discrete groupoid twist <span><math><mi>Σ</mi><mo>→</mo><mi>G</mi></math></span> whose twisted Steinberg algebra is isomorphic to <em>A</em> in a way that preserves <em>D</em>. In this paper, we show there is a lattice isomorphism between wide open subgroupoids of <em>G</em> and subalgebras <em>C</em> such that <span><math><mi>D</mi><mo>⊆</mo><mi>C</mi><mo>⊆</mo><mi>A</mi></math></span> and <span><math><mi>D</mi><mo>⊆</mo><mi>C</mi></math></span> is a quasi-Cartan pair. We also characterize which algebraic diagonal/algebraic Cartan/quasi-Cartan pairs have the property that every subalgebra <em>C</em> with <span><math><mi>D</mi><mo>⊆</mo><mi>C</mi><mo>⊆</mo><mi>A</mi></math></span> has <span><math><mi>D</mi><mo>⊆</mo><mi>C</mi></math></span> a diagonal/Cartan/quasi-Cartan pair. In the diagonal case, when the coefficient ring is a field, it is all of them. Beyond that, only pairs that are close to being diagonal have this property. We then apply our techniques to C*-algebraic inclusions and give a complete characterization of which Cartan pairs <span><math><mi>D</mi><mo>⊆</mo><mi>A</mi></math></span> have the property that every C*-subalgebra <em>C</em> with <span><math><mi>D</mi><mo>⊆</mo><mi>C</mi><mo>⊆</mo><mi>A</mi></math></span> has <span><math><mi>D</mi><mo>⊆</mo><mi>C</mi></math></span> a Cartan pair.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"481 \",\"pages\":\"Article 110534\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825004323\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004323","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Intermediate subalgebras of Cartan embeddings in rings and C*-algebras
Let be a quasi-Cartan pair of algebras. Then there exists a unique discrete groupoid twist whose twisted Steinberg algebra is isomorphic to A in a way that preserves D. In this paper, we show there is a lattice isomorphism between wide open subgroupoids of G and subalgebras C such that and is a quasi-Cartan pair. We also characterize which algebraic diagonal/algebraic Cartan/quasi-Cartan pairs have the property that every subalgebra C with has a diagonal/Cartan/quasi-Cartan pair. In the diagonal case, when the coefficient ring is a field, it is all of them. Beyond that, only pairs that are close to being diagonal have this property. We then apply our techniques to C*-algebraic inclusions and give a complete characterization of which Cartan pairs have the property that every C*-subalgebra C with has a Cartan pair.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.