基于小波增量熵的空间频率纹理分析:方法及其在多发性硬化症MRI中的应用

IF 6.8 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS
Muqaddas Abid , Muhammad Suzuri Hitam , Rozniza Ali , Hamed Azami , Anne Humeau-Heurtier
{"title":"基于小波增量熵的空间频率纹理分析:方法及其在多发性硬化症MRI中的应用","authors":"Muqaddas Abid ,&nbsp;Muhammad Suzuri Hitam ,&nbsp;Rozniza Ali ,&nbsp;Hamed Azami ,&nbsp;Anne Humeau-Heurtier","doi":"10.1016/j.ins.2025.122669","DOIUrl":null,"url":null,"abstract":"<div><div>Texture analysis is crucial for understanding images by extracting features that define spatial patterns. Recently, bi-dimensional extensions of entropy measures have gained attention due to their simplicity and strong theoretical foundations. However, existing methods primarily operate in the spatial domain and thus overlook frequency-domain and multiscale information. To address this, we introduce bidimensional wavelet increment entropy (wavelet IncrEn<span><math><msub><mrow></mrow><mrow><mn>2</mn><mi>D</mi></mrow></msub></math></span>). A one-level discrete wavelet transform (DWT) with the Haar wavelet decomposes each image into approximation (low-frequency) and, for some neuroimaging data, detail (high-frequency) subbands; IncrEn<span><math><msub><mrow></mrow><mrow><mn>2</mn><mi>D</mi></mrow></msub></math></span> is then applied both to capture global structural patterns and fine, detailed texture variations. We evaluated wavelet IncrEn<span><math><msub><mrow></mrow><mrow><mn>2</mn><mi>D</mi></mrow></msub></math></span> on synthetic and real datasets, demonstrating its effectiveness in distinguishing between different noise types (white Gaussian, salt-and-pepper, and speckle noise). Comparisons between periodic and synthesized images revealed lower wavelet IncrEn<span><math><msub><mrow></mrow><mrow><mn>2</mn><mi>D</mi></mrow></msub></math></span> values for periodic textures. Tests on real texture datasets highlight the method's ability to differentiate various patterns. In particular, wavelet IncrEn<span><math><msub><mrow></mrow><mrow><mn>2</mn><mi>D</mi></mrow></msub></math></span> achieved 86.69% accuracy in distinguishing MRI images of healthy versus multiple sclerosis–affected brains. Overall, wavelet IncrEn<span><math><msub><mrow></mrow><mrow><mn>2</mn><mi>D</mi></mrow></msub></math></span> offers a robust, frequency-aware descriptor that outperforms existing 2D entropy methods.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"723 ","pages":"Article 122669"},"PeriodicalIF":6.8000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatio-frequency texture analysis using wavelet increment entropy: Methodology and application to MRI in multiple sclerosis\",\"authors\":\"Muqaddas Abid ,&nbsp;Muhammad Suzuri Hitam ,&nbsp;Rozniza Ali ,&nbsp;Hamed Azami ,&nbsp;Anne Humeau-Heurtier\",\"doi\":\"10.1016/j.ins.2025.122669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Texture analysis is crucial for understanding images by extracting features that define spatial patterns. Recently, bi-dimensional extensions of entropy measures have gained attention due to their simplicity and strong theoretical foundations. However, existing methods primarily operate in the spatial domain and thus overlook frequency-domain and multiscale information. To address this, we introduce bidimensional wavelet increment entropy (wavelet IncrEn<span><math><msub><mrow></mrow><mrow><mn>2</mn><mi>D</mi></mrow></msub></math></span>). A one-level discrete wavelet transform (DWT) with the Haar wavelet decomposes each image into approximation (low-frequency) and, for some neuroimaging data, detail (high-frequency) subbands; IncrEn<span><math><msub><mrow></mrow><mrow><mn>2</mn><mi>D</mi></mrow></msub></math></span> is then applied both to capture global structural patterns and fine, detailed texture variations. We evaluated wavelet IncrEn<span><math><msub><mrow></mrow><mrow><mn>2</mn><mi>D</mi></mrow></msub></math></span> on synthetic and real datasets, demonstrating its effectiveness in distinguishing between different noise types (white Gaussian, salt-and-pepper, and speckle noise). Comparisons between periodic and synthesized images revealed lower wavelet IncrEn<span><math><msub><mrow></mrow><mrow><mn>2</mn><mi>D</mi></mrow></msub></math></span> values for periodic textures. Tests on real texture datasets highlight the method's ability to differentiate various patterns. In particular, wavelet IncrEn<span><math><msub><mrow></mrow><mrow><mn>2</mn><mi>D</mi></mrow></msub></math></span> achieved 86.69% accuracy in distinguishing MRI images of healthy versus multiple sclerosis–affected brains. Overall, wavelet IncrEn<span><math><msub><mrow></mrow><mrow><mn>2</mn><mi>D</mi></mrow></msub></math></span> offers a robust, frequency-aware descriptor that outperforms existing 2D entropy methods.</div></div>\",\"PeriodicalId\":51063,\"journal\":{\"name\":\"Information Sciences\",\"volume\":\"723 \",\"pages\":\"Article 122669\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020025525008023\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025525008023","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

纹理分析是通过提取定义空间模式的特征来理解图像的关键。近年来,熵测度的二维扩展由于其简单性和强大的理论基础而受到人们的关注。然而,现有的方法主要是在空间域中操作,从而忽略了频域和多尺度信息。为了解决这个问题,我们引入了二维小波增量熵(wavelet IncrEn2D)。带有Haar小波的单级离散小波变换(DWT)将每个图像分解为近似(低频)和一些神经成像数据的详细(高频)子带;然后应用IncrEn2D来捕获全局结构模式和精细,详细的纹理变化。我们在合成和真实数据集上评估了小波IncrEn2D,证明了它在区分不同噪声类型(高斯白噪声、椒盐噪声和斑点噪声)方面的有效性。周期图像与合成图像的比较表明,周期纹理的小波增量2d值较低。在真实纹理数据集上的测试突出了该方法区分各种图案的能力。特别是,小波IncrEn2D在区分健康与多发性硬化症影响的大脑MRI图像方面的准确率达到86.69%。总的来说,小波IncrEn2D提供了一个鲁棒的、频率感知的描述符,优于现有的二维熵方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-frequency texture analysis using wavelet increment entropy: Methodology and application to MRI in multiple sclerosis
Texture analysis is crucial for understanding images by extracting features that define spatial patterns. Recently, bi-dimensional extensions of entropy measures have gained attention due to their simplicity and strong theoretical foundations. However, existing methods primarily operate in the spatial domain and thus overlook frequency-domain and multiscale information. To address this, we introduce bidimensional wavelet increment entropy (wavelet IncrEn2D). A one-level discrete wavelet transform (DWT) with the Haar wavelet decomposes each image into approximation (low-frequency) and, for some neuroimaging data, detail (high-frequency) subbands; IncrEn2D is then applied both to capture global structural patterns and fine, detailed texture variations. We evaluated wavelet IncrEn2D on synthetic and real datasets, demonstrating its effectiveness in distinguishing between different noise types (white Gaussian, salt-and-pepper, and speckle noise). Comparisons between periodic and synthesized images revealed lower wavelet IncrEn2D values for periodic textures. Tests on real texture datasets highlight the method's ability to differentiate various patterns. In particular, wavelet IncrEn2D achieved 86.69% accuracy in distinguishing MRI images of healthy versus multiple sclerosis–affected brains. Overall, wavelet IncrEn2D offers a robust, frequency-aware descriptor that outperforms existing 2D entropy methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信