G.Y. Phani Kumar , Abhimanyu Bar , P.S.V.S. Sai Prasad
{"title":"一种新的最短最优约简计算方法","authors":"G.Y. Phani Kumar , Abhimanyu Bar , P.S.V.S. Sai Prasad","doi":"10.1016/j.ins.2025.122692","DOIUrl":null,"url":null,"abstract":"<div><div>Rough set theory has emerged as a robust soft computing paradigm for feature selection, commonly known as reduct computation. A decision system may contain multiple reducts of varying sizes, all offering equivalent classification capabilities. However, when model performance is a critical factor, the shortest reduct is generally preferred due to its simplicity and interpretability. The discernibility matrix method is a widely used technique for computing such reducts. Despite its effectiveness, this method is computationally intensive and classified as NP-hard, limiting its scalability for datasets where discernibility matrix computation becomes infeasible. This study addresses the limitations of traditional discernibility matrix-based approaches by introducing a novel method that combines a Breadth-First Search control strategy with an incremental approach to compute the absorbed discernibility matrix. The Breadth First Search strategy enables efficient exploration of the search space to identify the shortest optimal reduct early, while the incremental absorbed discernibility matrix enhances the computational scalability of the algorithm. To validate the proposed method, an experimental evaluation was conducted against two state-of-the-art algorithms: Breadth-First Search, representing the discernibility matrix-based strategy, and MinReduct, a benchmark for absorbed discernibility matrix-based approaches. Results demonstrate superior computational performance and earlier discovery of shortest reducts without compromising correctness or optimality.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"723 ","pages":"Article 122692"},"PeriodicalIF":6.8000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel approach for shortest optimal reduct computation\",\"authors\":\"G.Y. Phani Kumar , Abhimanyu Bar , P.S.V.S. Sai Prasad\",\"doi\":\"10.1016/j.ins.2025.122692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rough set theory has emerged as a robust soft computing paradigm for feature selection, commonly known as reduct computation. A decision system may contain multiple reducts of varying sizes, all offering equivalent classification capabilities. However, when model performance is a critical factor, the shortest reduct is generally preferred due to its simplicity and interpretability. The discernibility matrix method is a widely used technique for computing such reducts. Despite its effectiveness, this method is computationally intensive and classified as NP-hard, limiting its scalability for datasets where discernibility matrix computation becomes infeasible. This study addresses the limitations of traditional discernibility matrix-based approaches by introducing a novel method that combines a Breadth-First Search control strategy with an incremental approach to compute the absorbed discernibility matrix. The Breadth First Search strategy enables efficient exploration of the search space to identify the shortest optimal reduct early, while the incremental absorbed discernibility matrix enhances the computational scalability of the algorithm. To validate the proposed method, an experimental evaluation was conducted against two state-of-the-art algorithms: Breadth-First Search, representing the discernibility matrix-based strategy, and MinReduct, a benchmark for absorbed discernibility matrix-based approaches. Results demonstrate superior computational performance and earlier discovery of shortest reducts without compromising correctness or optimality.</div></div>\",\"PeriodicalId\":51063,\"journal\":{\"name\":\"Information Sciences\",\"volume\":\"723 \",\"pages\":\"Article 122692\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020025525008254\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025525008254","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A novel approach for shortest optimal reduct computation
Rough set theory has emerged as a robust soft computing paradigm for feature selection, commonly known as reduct computation. A decision system may contain multiple reducts of varying sizes, all offering equivalent classification capabilities. However, when model performance is a critical factor, the shortest reduct is generally preferred due to its simplicity and interpretability. The discernibility matrix method is a widely used technique for computing such reducts. Despite its effectiveness, this method is computationally intensive and classified as NP-hard, limiting its scalability for datasets where discernibility matrix computation becomes infeasible. This study addresses the limitations of traditional discernibility matrix-based approaches by introducing a novel method that combines a Breadth-First Search control strategy with an incremental approach to compute the absorbed discernibility matrix. The Breadth First Search strategy enables efficient exploration of the search space to identify the shortest optimal reduct early, while the incremental absorbed discernibility matrix enhances the computational scalability of the algorithm. To validate the proposed method, an experimental evaluation was conducted against two state-of-the-art algorithms: Breadth-First Search, representing the discernibility matrix-based strategy, and MinReduct, a benchmark for absorbed discernibility matrix-based approaches. Results demonstrate superior computational performance and earlier discovery of shortest reducts without compromising correctness or optimality.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.