通过DFTB模拟揭示Mn在NbSe2双层膜中的嵌入和扩散

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Bruno Ipaves , Raphael B. de Oliveira , Guilherme da Silva Lopes Fabris , Matthias Batzill , Douglas S. Galvão
{"title":"通过DFTB模拟揭示Mn在NbSe2双层膜中的嵌入和扩散","authors":"Bruno Ipaves ,&nbsp;Raphael B. de Oliveira ,&nbsp;Guilherme da Silva Lopes Fabris ,&nbsp;Matthias Batzill ,&nbsp;Douglas S. Galvão","doi":"10.1016/j.physe.2025.116355","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding transition metal atoms’ intercalation and diffusion behavior in two-dimensional (2D) materials is essential for optimizing their performance in emerging applications. In this study, we used density functional tight binding (DFTB) simulations to investigate the atomic-scale mechanisms of manganese (Mn) intercalation into NbSe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> bilayers. Our results show that Mn prefers intercalated and embedded positions rather than surface adsorption, as cohesive energy calculations indicate enhanced stability in these configurations. Nudged elastic band (NEB) calculations revealed an energy barrier of 0.68 eV for the migration of Mn into the interlayer, comparable to other substrates, suggesting accessible diffusion pathways. Molecular dynamics (MD) simulations further demonstrated an intercalation concentration-dependent behavior. Mn atoms initially adsorb on the surface and gradually diffuse inward, resulting in an effective intercalation at higher Mn densities before clustering effects emerge. These results provide helpful insights into the diffusion pathways and stability of Mn atoms within NbSe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> bilayers, consistent with experimental observations and offering a deeper understanding of heteroatom intercalation mechanisms in transition metal dichalcogenides.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"175 ","pages":"Article 116355"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling Mn intercalation and diffusion in NbSe2 bilayers through DFTB simulations\",\"authors\":\"Bruno Ipaves ,&nbsp;Raphael B. de Oliveira ,&nbsp;Guilherme da Silva Lopes Fabris ,&nbsp;Matthias Batzill ,&nbsp;Douglas S. Galvão\",\"doi\":\"10.1016/j.physe.2025.116355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding transition metal atoms’ intercalation and diffusion behavior in two-dimensional (2D) materials is essential for optimizing their performance in emerging applications. In this study, we used density functional tight binding (DFTB) simulations to investigate the atomic-scale mechanisms of manganese (Mn) intercalation into NbSe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> bilayers. Our results show that Mn prefers intercalated and embedded positions rather than surface adsorption, as cohesive energy calculations indicate enhanced stability in these configurations. Nudged elastic band (NEB) calculations revealed an energy barrier of 0.68 eV for the migration of Mn into the interlayer, comparable to other substrates, suggesting accessible diffusion pathways. Molecular dynamics (MD) simulations further demonstrated an intercalation concentration-dependent behavior. Mn atoms initially adsorb on the surface and gradually diffuse inward, resulting in an effective intercalation at higher Mn densities before clustering effects emerge. These results provide helpful insights into the diffusion pathways and stability of Mn atoms within NbSe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> bilayers, consistent with experimental observations and offering a deeper understanding of heteroatom intercalation mechanisms in transition metal dichalcogenides.</div></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"175 \",\"pages\":\"Article 116355\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947725001857\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725001857","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

了解过渡金属原子在二维(2D)材料中的嵌入和扩散行为对于优化其在新兴应用中的性能至关重要。在这项研究中,我们使用密度功能紧密结合(DFTB)模拟来研究锰(Mn)嵌入NbSe2双层结构的原子尺度机制。我们的研究结果表明,Mn更倾向于嵌入和嵌入的位置,而不是表面吸附,因为结合能计算表明这些构型的稳定性增强。微推弹性带(NEB)计算显示,Mn迁移到中间层的能量势垒为0.68 eV,与其他衬底相当,表明可以通过扩散途径。分子动力学(MD)模拟进一步证明了插层的浓度依赖行为。锰原子最初吸附在表面,逐渐向内扩散,导致在高锰密度下有效嵌入,然后才出现聚类效应。这些结果与实验观察结果一致,有助于深入了解NbSe2双层中Mn原子的扩散途径和稳定性,并对过渡金属二硫族化合物中的杂原子嵌入机制有了更深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling Mn intercalation and diffusion in NbSe2 bilayers through DFTB simulations
Understanding transition metal atoms’ intercalation and diffusion behavior in two-dimensional (2D) materials is essential for optimizing their performance in emerging applications. In this study, we used density functional tight binding (DFTB) simulations to investigate the atomic-scale mechanisms of manganese (Mn) intercalation into NbSe2 bilayers. Our results show that Mn prefers intercalated and embedded positions rather than surface adsorption, as cohesive energy calculations indicate enhanced stability in these configurations. Nudged elastic band (NEB) calculations revealed an energy barrier of 0.68 eV for the migration of Mn into the interlayer, comparable to other substrates, suggesting accessible diffusion pathways. Molecular dynamics (MD) simulations further demonstrated an intercalation concentration-dependent behavior. Mn atoms initially adsorb on the surface and gradually diffuse inward, resulting in an effective intercalation at higher Mn densities before clustering effects emerge. These results provide helpful insights into the diffusion pathways and stability of Mn atoms within NbSe2 bilayers, consistent with experimental observations and offering a deeper understanding of heteroatom intercalation mechanisms in transition metal dichalcogenides.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信