Johannes S. Løken, Vegard G. Jervell, Morten Hammer, Bjørn Hafskjold, Thuat T. Trinh, Øivind Wilhelmsen
{"title":"Lennard-Jones样条流体的黏度、热导率和自扩散系数:短程势理论的评价","authors":"Johannes S. Løken, Vegard G. Jervell, Morten Hammer, Bjørn Hafskjold, Thuat T. Trinh, Øivind Wilhelmsen","doi":"10.1016/j.fluid.2025.114584","DOIUrl":null,"url":null,"abstract":"<div><div>The Lennard-Jones/spline (LJ/s) potential is truncated and splined such that the potential and its first derivative continuously approach zero at <span><math><mrow><mo>≈</mo><mn>1</mn><mo>.</mo><mn>74</mn><mi>σ</mi></mrow></math></span>, making it short-ranged. In this work, we present a systematic study of the thermal conductivity, shear viscosity, and self-diffusion coefficient of the LJ/s fluid. Four theories are evaluated by comparing to results from equilibrium and non-equilibrium molecular dynamics simulations for temperatures in the range <span><math><mrow><mn>0</mn><mo>.</mo><mn>7</mn><mo>≤</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>≤</mo><mn>10</mn></mrow></math></span> and densities in the range <span><math><mrow><mn>0</mn><mo>.</mo><mn>1</mn><mo>≤</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>≤</mo><mn>0</mn><mo>.</mo><mn>8</mn></mrow></math></span>. After regressing two parameters for each transport property in extended corresponding state theory with argon as reference fluid, the Average Absolute Relative Deviations (AARDs) with respect to the simulation data are 4.7% and 2.8% for the viscosity and thermal conductivity respectively. Using 4-6 regression parameters, residual entropy scaling yields AARDs of 5.7%, 2.6%, and 2.5% for the viscosity, thermal conductivity and self-diffusion coefficient respectively. A new method called corresponding entropic states theory is presented, which combines the concept of entropy scaling with the extended corresponding states formalism. Without any fitting parameters and with argon as reference fluid, the viscosity and thermal conductivity from the method have AARDs of 5.2% and 2.6%. For residual entropy scaling, extended corresponding states, and corresponding entropic states, the largest deviations are for the viscosity near the critical point, which can be explained by inaccuracies in the equation of state. Revised Enskog Theory, which is fully predictive, gives AARDs below 10% for <span><math><mrow><msup><mrow><mi>T</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>≥</mo><mn>3</mn></mrow></math></span>, up to <span><math><mrow><msup><mrow><mi>ρ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn></mrow></math></span>. More work is needed to increase the accuracy of Revised Enskog theory at lower temperatures and higher densities.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"601 ","pages":"Article 114584"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viscosity, thermal conductivity and self-diffusion coefficient of the Lennard-Jones spline fluid: Evaluation of theories for a short-ranged potential\",\"authors\":\"Johannes S. Løken, Vegard G. Jervell, Morten Hammer, Bjørn Hafskjold, Thuat T. Trinh, Øivind Wilhelmsen\",\"doi\":\"10.1016/j.fluid.2025.114584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Lennard-Jones/spline (LJ/s) potential is truncated and splined such that the potential and its first derivative continuously approach zero at <span><math><mrow><mo>≈</mo><mn>1</mn><mo>.</mo><mn>74</mn><mi>σ</mi></mrow></math></span>, making it short-ranged. In this work, we present a systematic study of the thermal conductivity, shear viscosity, and self-diffusion coefficient of the LJ/s fluid. Four theories are evaluated by comparing to results from equilibrium and non-equilibrium molecular dynamics simulations for temperatures in the range <span><math><mrow><mn>0</mn><mo>.</mo><mn>7</mn><mo>≤</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>≤</mo><mn>10</mn></mrow></math></span> and densities in the range <span><math><mrow><mn>0</mn><mo>.</mo><mn>1</mn><mo>≤</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>≤</mo><mn>0</mn><mo>.</mo><mn>8</mn></mrow></math></span>. After regressing two parameters for each transport property in extended corresponding state theory with argon as reference fluid, the Average Absolute Relative Deviations (AARDs) with respect to the simulation data are 4.7% and 2.8% for the viscosity and thermal conductivity respectively. Using 4-6 regression parameters, residual entropy scaling yields AARDs of 5.7%, 2.6%, and 2.5% for the viscosity, thermal conductivity and self-diffusion coefficient respectively. A new method called corresponding entropic states theory is presented, which combines the concept of entropy scaling with the extended corresponding states formalism. Without any fitting parameters and with argon as reference fluid, the viscosity and thermal conductivity from the method have AARDs of 5.2% and 2.6%. For residual entropy scaling, extended corresponding states, and corresponding entropic states, the largest deviations are for the viscosity near the critical point, which can be explained by inaccuracies in the equation of state. Revised Enskog Theory, which is fully predictive, gives AARDs below 10% for <span><math><mrow><msup><mrow><mi>T</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>≥</mo><mn>3</mn></mrow></math></span>, up to <span><math><mrow><msup><mrow><mi>ρ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn></mrow></math></span>. More work is needed to increase the accuracy of Revised Enskog theory at lower temperatures and higher densities.</div></div>\",\"PeriodicalId\":12170,\"journal\":{\"name\":\"Fluid Phase Equilibria\",\"volume\":\"601 \",\"pages\":\"Article 114584\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Phase Equilibria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378381225002547\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381225002547","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Viscosity, thermal conductivity and self-diffusion coefficient of the Lennard-Jones spline fluid: Evaluation of theories for a short-ranged potential
The Lennard-Jones/spline (LJ/s) potential is truncated and splined such that the potential and its first derivative continuously approach zero at , making it short-ranged. In this work, we present a systematic study of the thermal conductivity, shear viscosity, and self-diffusion coefficient of the LJ/s fluid. Four theories are evaluated by comparing to results from equilibrium and non-equilibrium molecular dynamics simulations for temperatures in the range and densities in the range . After regressing two parameters for each transport property in extended corresponding state theory with argon as reference fluid, the Average Absolute Relative Deviations (AARDs) with respect to the simulation data are 4.7% and 2.8% for the viscosity and thermal conductivity respectively. Using 4-6 regression parameters, residual entropy scaling yields AARDs of 5.7%, 2.6%, and 2.5% for the viscosity, thermal conductivity and self-diffusion coefficient respectively. A new method called corresponding entropic states theory is presented, which combines the concept of entropy scaling with the extended corresponding states formalism. Without any fitting parameters and with argon as reference fluid, the viscosity and thermal conductivity from the method have AARDs of 5.2% and 2.6%. For residual entropy scaling, extended corresponding states, and corresponding entropic states, the largest deviations are for the viscosity near the critical point, which can be explained by inaccuracies in the equation of state. Revised Enskog Theory, which is fully predictive, gives AARDs below 10% for , up to . More work is needed to increase the accuracy of Revised Enskog theory at lower temperatures and higher densities.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.