Oleg Snegirev , Vladimir Klimchenko , Denis Shtakin , Andrei Torgashov , Fan Yang
{"title":"具有相互依赖误差预测器的多变量软传感器应用于工业分馏器","authors":"Oleg Snegirev , Vladimir Klimchenko , Denis Shtakin , Andrei Torgashov , Fan Yang","doi":"10.1016/j.jprocont.2025.103555","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the development of a multivariable soft sensor (SS) with a predictor designed to handle mutual dependencies within multivariate error series. Typically, the mutual influence in vector time series is characterized using cross-correlation. The proposed multivariable cross-correlated error predictor (MCCEP) framework effectively manages such dependencies and is compatible with any data-driven SS model. Forecasted error values are fed back into the SS output as corrections, refining the final predictions of quality indicators. The MCCEP model is constructed through statistical analysis to minimize the generalized variance – defined as the determinant of the covariance matrix – of multivariate forecast errors. Unlike conventional approaches such as bias update techniques, the MCCEP model is chosen from a broad class of predictors for multivariate linear processes, explicitly considering the dynamic relationships among the univariate components of the SS error process. For the <em>n</em>-dimensional case, it is analytically demonstrated that MCCEP minimizes the generalized variance of multivariate errors by leveraging the cross-correlation functions among the univariate components of the time series, thereby enhancing SS accuracy. Analytical methods for constructing MCCEP using the autocovariance generating function and the squared SS error coherence spectrum are developed. The framework’s superiority is highlighted through a case study involving an industrial fractionator, where the SS with MCCEP outperforms conventional SSs employing dynamic partial least squares and bias updates or developed sequentially without considering interdependencies among univariate components of multi-output model errors.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"155 ","pages":"Article 103555"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariable soft sensor with a predictor of mutually dependent errors applied to an industrial fractionator\",\"authors\":\"Oleg Snegirev , Vladimir Klimchenko , Denis Shtakin , Andrei Torgashov , Fan Yang\",\"doi\":\"10.1016/j.jprocont.2025.103555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper addresses the development of a multivariable soft sensor (SS) with a predictor designed to handle mutual dependencies within multivariate error series. Typically, the mutual influence in vector time series is characterized using cross-correlation. The proposed multivariable cross-correlated error predictor (MCCEP) framework effectively manages such dependencies and is compatible with any data-driven SS model. Forecasted error values are fed back into the SS output as corrections, refining the final predictions of quality indicators. The MCCEP model is constructed through statistical analysis to minimize the generalized variance – defined as the determinant of the covariance matrix – of multivariate forecast errors. Unlike conventional approaches such as bias update techniques, the MCCEP model is chosen from a broad class of predictors for multivariate linear processes, explicitly considering the dynamic relationships among the univariate components of the SS error process. For the <em>n</em>-dimensional case, it is analytically demonstrated that MCCEP minimizes the generalized variance of multivariate errors by leveraging the cross-correlation functions among the univariate components of the time series, thereby enhancing SS accuracy. Analytical methods for constructing MCCEP using the autocovariance generating function and the squared SS error coherence spectrum are developed. The framework’s superiority is highlighted through a case study involving an industrial fractionator, where the SS with MCCEP outperforms conventional SSs employing dynamic partial least squares and bias updates or developed sequentially without considering interdependencies among univariate components of multi-output model errors.</div></div>\",\"PeriodicalId\":50079,\"journal\":{\"name\":\"Journal of Process Control\",\"volume\":\"155 \",\"pages\":\"Article 103555\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Process Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959152425001830\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152425001830","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Multivariable soft sensor with a predictor of mutually dependent errors applied to an industrial fractionator
This paper addresses the development of a multivariable soft sensor (SS) with a predictor designed to handle mutual dependencies within multivariate error series. Typically, the mutual influence in vector time series is characterized using cross-correlation. The proposed multivariable cross-correlated error predictor (MCCEP) framework effectively manages such dependencies and is compatible with any data-driven SS model. Forecasted error values are fed back into the SS output as corrections, refining the final predictions of quality indicators. The MCCEP model is constructed through statistical analysis to minimize the generalized variance – defined as the determinant of the covariance matrix – of multivariate forecast errors. Unlike conventional approaches such as bias update techniques, the MCCEP model is chosen from a broad class of predictors for multivariate linear processes, explicitly considering the dynamic relationships among the univariate components of the SS error process. For the n-dimensional case, it is analytically demonstrated that MCCEP minimizes the generalized variance of multivariate errors by leveraging the cross-correlation functions among the univariate components of the time series, thereby enhancing SS accuracy. Analytical methods for constructing MCCEP using the autocovariance generating function and the squared SS error coherence spectrum are developed. The framework’s superiority is highlighted through a case study involving an industrial fractionator, where the SS with MCCEP outperforms conventional SSs employing dynamic partial least squares and bias updates or developed sequentially without considering interdependencies among univariate components of multi-output model errors.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.