{"title":"环戊二烯基钌双(三芳基膦)氯化物CpRu(PAr3)2Cl (Ar = m- toyl, m- fluorphenyl, m-anisyl, p- chlorphenyl)和Cp ' ru (PPh3)2Cl (Cp ' = CH3C5H4和CH3C(O)C5H4)中的膦取代动力学","authors":"Rein U. Kirss","doi":"10.1016/j.jorganchem.2025.123857","DOIUrl":null,"url":null,"abstract":"<div><div>Reactions between CpRu(PAr<sub>3</sub>)<sub>2</sub>Cl (Ar = <em>m</em>-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub> <strong>1a</strong>, <em>m</em>-FC<sub>6</sub>H<sub>4</sub> <strong>1b</strong>, and <em>m</em>-CH<sub>3</sub>OC<sub>6</sub>H<sub>4</sub> <strong>1c</strong>) and PMePh<sub>2</sub> yield the corresponding mono-substituted products, CpRu(PAr<sub>3</sub>)(PMePh<sub>2</sub>)Cl (<strong>2a-c</strong>). Kinetic measurements for the reaction in CDCl<sub>3</sub> under pseudo-first order conditions yield values for <em>k<sub>obs</sub></em> ranging from 22.2±0.2 × 10<sup>-6</sup> to 5.41±0.24 × 10<sup>–6</sup> s<sup>–1</sup>. Activation parameters, ∆H<sup>†</sup> and ∆S<sup>†</sup>, range from 93±7 to 116±12 kJ/mol and –38±56 to 39±40 J/mol-K, respectively. The relative rates follow the order <strong>1a</strong> > <strong>1b</strong> > <strong>1c</strong>. The rate constants for <strong>1a-c</strong> are similar to <em>k<sub>obs</sub></em> for CpRu(PAr<sub>3</sub>)<sub>2</sub>Cl where Ar = <em>p</em>-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub> <strong>3a</strong>, <em>p</em>-FC<sub>6</sub>H<sub>4</sub> <strong>3b</strong>, and <em>p</em>-CH<sub>3</sub>OC<sub>6</sub>H<sub>4</sub> <strong>3c,</strong> suggesting that there is little or no steric effect of the <em>m-</em> vs <em>p-</em> position of the substituent on the Ar group. The rate of phosphine substitution in CpRu[P(<em>p-</em>ClC<sub>6</sub>H<sub>4</sub>)<sub>3</sub>]<sub>2</sub>Cl (<strong>1d</strong>) is slower than for <strong>3a-3c</strong>. Despite different electronic properties (E<sub>1/2</sub>), similar rates are observed for reactions of (MeC<sub>5</sub>H<sub>4</sub>)Ru(PPh<sub>3</sub>)<sub>2</sub>Cl (<strong>1e</strong>) and (C<sub>5</sub>H<sub>4</sub>C(O)Me)Ru(PPh<sub>3</sub>)<sub>2</sub>Cl (<strong>1f</strong>) with PMePh<sub>2</sub>. Taken together, the data suggest that the rates of phosphine substitution in (η<sup>5</sup>-RC<sub>5</sub>H<sub>4</sub>)Ru(PAr<sub>3</sub>)<sub>2</sub>Cl complexes depends on a combination of σ-donor and π-acceptor properties of the PAr<sub>3</sub> ligands.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1041 ","pages":"Article 123857"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetics of phosphine substitution in cyclopentadienylruthenium bis(triarylphosphine)chlorides CpRu(PAr3)2Cl (Ar = m-tolyl, m-fluorophenyl, m-anisyl, p-chlorophenyl) and Cp’Ru(PPh3)2Cl (Cp’ = CH3C5H4 and CH3C(O)C5H4)\",\"authors\":\"Rein U. Kirss\",\"doi\":\"10.1016/j.jorganchem.2025.123857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reactions between CpRu(PAr<sub>3</sub>)<sub>2</sub>Cl (Ar = <em>m</em>-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub> <strong>1a</strong>, <em>m</em>-FC<sub>6</sub>H<sub>4</sub> <strong>1b</strong>, and <em>m</em>-CH<sub>3</sub>OC<sub>6</sub>H<sub>4</sub> <strong>1c</strong>) and PMePh<sub>2</sub> yield the corresponding mono-substituted products, CpRu(PAr<sub>3</sub>)(PMePh<sub>2</sub>)Cl (<strong>2a-c</strong>). Kinetic measurements for the reaction in CDCl<sub>3</sub> under pseudo-first order conditions yield values for <em>k<sub>obs</sub></em> ranging from 22.2±0.2 × 10<sup>-6</sup> to 5.41±0.24 × 10<sup>–6</sup> s<sup>–1</sup>. Activation parameters, ∆H<sup>†</sup> and ∆S<sup>†</sup>, range from 93±7 to 116±12 kJ/mol and –38±56 to 39±40 J/mol-K, respectively. The relative rates follow the order <strong>1a</strong> > <strong>1b</strong> > <strong>1c</strong>. The rate constants for <strong>1a-c</strong> are similar to <em>k<sub>obs</sub></em> for CpRu(PAr<sub>3</sub>)<sub>2</sub>Cl where Ar = <em>p</em>-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub> <strong>3a</strong>, <em>p</em>-FC<sub>6</sub>H<sub>4</sub> <strong>3b</strong>, and <em>p</em>-CH<sub>3</sub>OC<sub>6</sub>H<sub>4</sub> <strong>3c,</strong> suggesting that there is little or no steric effect of the <em>m-</em> vs <em>p-</em> position of the substituent on the Ar group. The rate of phosphine substitution in CpRu[P(<em>p-</em>ClC<sub>6</sub>H<sub>4</sub>)<sub>3</sub>]<sub>2</sub>Cl (<strong>1d</strong>) is slower than for <strong>3a-3c</strong>. Despite different electronic properties (E<sub>1/2</sub>), similar rates are observed for reactions of (MeC<sub>5</sub>H<sub>4</sub>)Ru(PPh<sub>3</sub>)<sub>2</sub>Cl (<strong>1e</strong>) and (C<sub>5</sub>H<sub>4</sub>C(O)Me)Ru(PPh<sub>3</sub>)<sub>2</sub>Cl (<strong>1f</strong>) with PMePh<sub>2</sub>. Taken together, the data suggest that the rates of phosphine substitution in (η<sup>5</sup>-RC<sub>5</sub>H<sub>4</sub>)Ru(PAr<sub>3</sub>)<sub>2</sub>Cl complexes depends on a combination of σ-donor and π-acceptor properties of the PAr<sub>3</sub> ligands.</div></div>\",\"PeriodicalId\":374,\"journal\":{\"name\":\"Journal of Organometallic Chemistry\",\"volume\":\"1041 \",\"pages\":\"Article 123857\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organometallic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022328X25003493\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022328X25003493","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Kinetics of phosphine substitution in cyclopentadienylruthenium bis(triarylphosphine)chlorides CpRu(PAr3)2Cl (Ar = m-tolyl, m-fluorophenyl, m-anisyl, p-chlorophenyl) and Cp’Ru(PPh3)2Cl (Cp’ = CH3C5H4 and CH3C(O)C5H4)
Reactions between CpRu(PAr3)2Cl (Ar = m-CH3C6H41a, m-FC6H41b, and m-CH3OC6H41c) and PMePh2 yield the corresponding mono-substituted products, CpRu(PAr3)(PMePh2)Cl (2a-c). Kinetic measurements for the reaction in CDCl3 under pseudo-first order conditions yield values for kobs ranging from 22.2±0.2 × 10-6 to 5.41±0.24 × 10–6 s–1. Activation parameters, ∆H† and ∆S†, range from 93±7 to 116±12 kJ/mol and –38±56 to 39±40 J/mol-K, respectively. The relative rates follow the order 1a > 1b > 1c. The rate constants for 1a-c are similar to kobs for CpRu(PAr3)2Cl where Ar = p-CH3C6H43a, p-FC6H43b, and p-CH3OC6H43c, suggesting that there is little or no steric effect of the m- vs p- position of the substituent on the Ar group. The rate of phosphine substitution in CpRu[P(p-ClC6H4)3]2Cl (1d) is slower than for 3a-3c. Despite different electronic properties (E1/2), similar rates are observed for reactions of (MeC5H4)Ru(PPh3)2Cl (1e) and (C5H4C(O)Me)Ru(PPh3)2Cl (1f) with PMePh2. Taken together, the data suggest that the rates of phosphine substitution in (η5-RC5H4)Ru(PAr3)2Cl complexes depends on a combination of σ-donor and π-acceptor properties of the PAr3 ligands.
期刊介绍:
The Journal of Organometallic Chemistry targets original papers dealing with theoretical aspects, structural chemistry, synthesis, physical and chemical properties (including reaction mechanisms), and practical applications of organometallic compounds.
Organometallic compounds are defined as compounds that contain metal - carbon bonds. The term metal includes all alkali and alkaline earth metals, all transition metals and the lanthanides and actinides in the Periodic Table. Metalloids including the elements in Group 13 and the heavier members of the Groups 14 - 16 are also included. The term chemistry includes syntheses, characterizations and reaction chemistry of all such compounds. Research reports based on use of organometallic complexes in bioorganometallic chemistry, medicine, material sciences, homogeneous catalysis and energy conversion are also welcome.
The scope of the journal has been enlarged to encompass important research on organometallic complexes in bioorganometallic chemistry and material sciences, and of heavier main group elements in organometallic chemistry. The journal also publishes review articles, short communications and notes.