微囊化相变材料固井微裂缝控制及性能优化

IF 4.6 0 ENERGY & FUELS
Mingming Zheng , Zurui Wu , Tianle Liu , Shichun Yan , Xiaoke Li , Guosheng Jiang , Guokun Yang , Yichen Du , Yawei Zhang
{"title":"微囊化相变材料固井微裂缝控制及性能优化","authors":"Mingming Zheng ,&nbsp;Zurui Wu ,&nbsp;Tianle Liu ,&nbsp;Shichun Yan ,&nbsp;Xiaoke Li ,&nbsp;Guosheng Jiang ,&nbsp;Guokun Yang ,&nbsp;Yichen Du ,&nbsp;Yawei Zhang","doi":"10.1016/j.geoen.2025.214220","DOIUrl":null,"url":null,"abstract":"<div><div>As deep-sea resource exploration progresses, maintaining wellbore stability and preventing natural gas hydrate (NGH) decomposition during cementing pose persistent challenges. This study clarifies the mechanisms of microencapsulated phase change materials (mPCM) in cement slurry by optimizing mPCM particle size and dosage. An efficient synthesis method was developed to produce mPCM with a polymethyl methacrylate (PMMA) shell and a hexadecane-octadecane core, followed by detailed physicochemical characterization. The impact of mPCM particle size (unscreened and 5–50, 50–75, 75–100 μm) and dosage (0–12 wt%) on Class G oilwell cement performance was assessed under simulated deep-sea conditions (15 °C, 3.5 % NaCl solution) using calorimetry, micro-CT, scanning electron microscopy, and compressive strength tests. Findings reveal that mPCM reduces hydration heat by up to 15.56 %, accelerates hydration, and shortens the induction period. Adding 4 wt% mPCM with particles smaller than 50 μm enhances cement compressive strength by 12.55 % while maintaining slurry fluidity. Smaller mPCM particles improve pore structure uniformity, decreasing porosity by 46.33 %, whereas larger particles increase pore complexity, reducing mechanical integrity. Thermal regulation efficiency diminishes when ambient temperature exceeds the mPCM phase transition onset, though minimal heat control persists. These results provide a novel approach to designing low-heat cement slurries, offering theoretical and technical insights for safe, sustainable deep-sea oil and gas extraction with reduced ecological impact.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"257 ","pages":"Article 214220"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of microcrack control and performance in deepwater well cementing with microencapsulated phase change materials\",\"authors\":\"Mingming Zheng ,&nbsp;Zurui Wu ,&nbsp;Tianle Liu ,&nbsp;Shichun Yan ,&nbsp;Xiaoke Li ,&nbsp;Guosheng Jiang ,&nbsp;Guokun Yang ,&nbsp;Yichen Du ,&nbsp;Yawei Zhang\",\"doi\":\"10.1016/j.geoen.2025.214220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As deep-sea resource exploration progresses, maintaining wellbore stability and preventing natural gas hydrate (NGH) decomposition during cementing pose persistent challenges. This study clarifies the mechanisms of microencapsulated phase change materials (mPCM) in cement slurry by optimizing mPCM particle size and dosage. An efficient synthesis method was developed to produce mPCM with a polymethyl methacrylate (PMMA) shell and a hexadecane-octadecane core, followed by detailed physicochemical characterization. The impact of mPCM particle size (unscreened and 5–50, 50–75, 75–100 μm) and dosage (0–12 wt%) on Class G oilwell cement performance was assessed under simulated deep-sea conditions (15 °C, 3.5 % NaCl solution) using calorimetry, micro-CT, scanning electron microscopy, and compressive strength tests. Findings reveal that mPCM reduces hydration heat by up to 15.56 %, accelerates hydration, and shortens the induction period. Adding 4 wt% mPCM with particles smaller than 50 μm enhances cement compressive strength by 12.55 % while maintaining slurry fluidity. Smaller mPCM particles improve pore structure uniformity, decreasing porosity by 46.33 %, whereas larger particles increase pore complexity, reducing mechanical integrity. Thermal regulation efficiency diminishes when ambient temperature exceeds the mPCM phase transition onset, though minimal heat control persists. These results provide a novel approach to designing low-heat cement slurries, offering theoretical and technical insights for safe, sustainable deep-sea oil and gas extraction with reduced ecological impact.</div></div>\",\"PeriodicalId\":100578,\"journal\":{\"name\":\"Geoenergy Science and Engineering\",\"volume\":\"257 \",\"pages\":\"Article 214220\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoenergy Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949891025005780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891025005780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

随着深海资源勘探的不断深入,在固井过程中保持井筒稳定性和防止天然气水合物(NGH)分解是一个持续的挑战。本研究通过优化微胶囊化相变材料的粒径和用量,阐明了微胶囊化相变材料在水泥浆中的作用机理。建立了以聚甲基丙烯酸甲酯(PMMA)为壳层,十六烷-十八烷为核的聚甲基丙烯酸甲酯(mPCM)的高效合成方法,并对其进行了详细的物理化学表征。在模拟深海条件下(15°C, 3.5% NaCl溶液),通过量热法、微ct、扫描电镜和抗压强度测试,评估了mPCM粒径(未筛选、5-50、50-75、75-100 μm)和掺量(0-12 wt%)对G类油井水泥性能的影响。结果表明,mPCM可使水化热降低15.56%,加速水化,缩短水化诱导期。颗粒小于50 μm的mPCM添加量为4 wt%,在保持水泥浆流动性的前提下,水泥抗压强度提高12.55%。较小的mPCM颗粒改善了孔隙结构均匀性,孔隙度降低46.33%,而较大的mPCM颗粒增加了孔隙复杂性,降低了力学完整性。当环境温度超过mPCM相变开始时,热调节效率降低,尽管最小的热控制仍然存在。这些结果为设计低热水泥浆提供了一种新方法,为安全、可持续的深海油气开采提供了理论和技术见解,同时减少了生态影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of microcrack control and performance in deepwater well cementing with microencapsulated phase change materials
As deep-sea resource exploration progresses, maintaining wellbore stability and preventing natural gas hydrate (NGH) decomposition during cementing pose persistent challenges. This study clarifies the mechanisms of microencapsulated phase change materials (mPCM) in cement slurry by optimizing mPCM particle size and dosage. An efficient synthesis method was developed to produce mPCM with a polymethyl methacrylate (PMMA) shell and a hexadecane-octadecane core, followed by detailed physicochemical characterization. The impact of mPCM particle size (unscreened and 5–50, 50–75, 75–100 μm) and dosage (0–12 wt%) on Class G oilwell cement performance was assessed under simulated deep-sea conditions (15 °C, 3.5 % NaCl solution) using calorimetry, micro-CT, scanning electron microscopy, and compressive strength tests. Findings reveal that mPCM reduces hydration heat by up to 15.56 %, accelerates hydration, and shortens the induction period. Adding 4 wt% mPCM with particles smaller than 50 μm enhances cement compressive strength by 12.55 % while maintaining slurry fluidity. Smaller mPCM particles improve pore structure uniformity, decreasing porosity by 46.33 %, whereas larger particles increase pore complexity, reducing mechanical integrity. Thermal regulation efficiency diminishes when ambient temperature exceeds the mPCM phase transition onset, though minimal heat control persists. These results provide a novel approach to designing low-heat cement slurries, offering theoretical and technical insights for safe, sustainable deep-sea oil and gas extraction with reduced ecological impact.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信