Juan Sebastián Herrera-Carmona , Cristian Ortiz , James Waldron
{"title":"可微堆栈上的向量场和导数","authors":"Juan Sebastián Herrera-Carmona , Cristian Ortiz , James Waldron","doi":"10.1016/j.difgeo.2025.102292","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce and study module structures on both the dgla of multiplicative vector fields and the graded algebra of functions on Lie groupoids. We show that there is an associated structure of a graded Lie-Rinehart algebra on the vector fields of a differentiable stack over its smooth functions that is Morita invariant in an appropriate sense. Furthermore, we show that associated Van-Est type maps are compatible with those module structures. We also present several examples.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"101 ","pages":"Article 102292"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vector fields and derivations on differentiable stacks\",\"authors\":\"Juan Sebastián Herrera-Carmona , Cristian Ortiz , James Waldron\",\"doi\":\"10.1016/j.difgeo.2025.102292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce and study module structures on both the dgla of multiplicative vector fields and the graded algebra of functions on Lie groupoids. We show that there is an associated structure of a graded Lie-Rinehart algebra on the vector fields of a differentiable stack over its smooth functions that is Morita invariant in an appropriate sense. Furthermore, we show that associated Van-Est type maps are compatible with those module structures. We also present several examples.</div></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"101 \",\"pages\":\"Article 102292\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224525000671\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000671","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Vector fields and derivations on differentiable stacks
We introduce and study module structures on both the dgla of multiplicative vector fields and the graded algebra of functions on Lie groupoids. We show that there is an associated structure of a graded Lie-Rinehart algebra on the vector fields of a differentiable stack over its smooth functions that is Morita invariant in an appropriate sense. Furthermore, we show that associated Van-Est type maps are compatible with those module structures. We also present several examples.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.