可微堆栈上的向量场和导数

IF 0.7 4区 数学 Q3 MATHEMATICS
Juan Sebastián Herrera-Carmona , Cristian Ortiz , James Waldron
{"title":"可微堆栈上的向量场和导数","authors":"Juan Sebastián Herrera-Carmona ,&nbsp;Cristian Ortiz ,&nbsp;James Waldron","doi":"10.1016/j.difgeo.2025.102292","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce and study module structures on both the dgla of multiplicative vector fields and the graded algebra of functions on Lie groupoids. We show that there is an associated structure of a graded Lie-Rinehart algebra on the vector fields of a differentiable stack over its smooth functions that is Morita invariant in an appropriate sense. Furthermore, we show that associated Van-Est type maps are compatible with those module structures. We also present several examples.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"101 ","pages":"Article 102292"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vector fields and derivations on differentiable stacks\",\"authors\":\"Juan Sebastián Herrera-Carmona ,&nbsp;Cristian Ortiz ,&nbsp;James Waldron\",\"doi\":\"10.1016/j.difgeo.2025.102292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce and study module structures on both the dgla of multiplicative vector fields and the graded algebra of functions on Lie groupoids. We show that there is an associated structure of a graded Lie-Rinehart algebra on the vector fields of a differentiable stack over its smooth functions that is Morita invariant in an appropriate sense. Furthermore, we show that associated Van-Est type maps are compatible with those module structures. We also present several examples.</div></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"101 \",\"pages\":\"Article 102292\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224525000671\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000671","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍并研究了李群上的乘法向量场和函数的梯度代数的模结构。我们证明了在光滑函数上的可微堆栈的向量场上存在一个适当意义上的Morita不变量的梯度Lie-Rinehart代数的关联结构。此外,我们还证明了相关的Van-Est类型映射与这些模块结构兼容。我们还提出了几个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vector fields and derivations on differentiable stacks
We introduce and study module structures on both the dgla of multiplicative vector fields and the graded algebra of functions on Lie groupoids. We show that there is an associated structure of a graded Lie-Rinehart algebra on the vector fields of a differentiable stack over its smooth functions that is Morita invariant in an appropriate sense. Furthermore, we show that associated Van-Est type maps are compatible with those module structures. We also present several examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信