移动人群感知中基于图神经网络的个性化任务分配

IF 4.6 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Shuang Ding , Weijie Sun , Xin He , Anny Li
{"title":"移动人群感知中基于图神经网络的个性化任务分配","authors":"Shuang Ding ,&nbsp;Weijie Sun ,&nbsp;Xin He ,&nbsp;Anny Li","doi":"10.1016/j.comnet.2025.111675","DOIUrl":null,"url":null,"abstract":"<div><div>Personalized Task Allocation (PTA) has emerged as a pivotal challenge in mobile crowd sensing, aiming to balance platform costs and worker satisfaction through optimized task allocation, yet facing dual critical challenges: the exponential growth of problem scale driven by technological advancements and severe data sparsity caused by limited historical allocation and privacy constraints. To address these challenges, this paper proposes PTA-GNNTR, a novel two-stage graph neural network framework where Stage 1 develops a Graph Neural Network-based Task Recommendation (GNNTR) that integrates multi-dimensional factors (historical records, social relationships, and task attributes) using graph convolutional networks, attention mechanisms, and multi-layer perceptrons to enhance feature representations and generate satisfaction-oriented pre-allocation results, while Stage 2 constructs a worker-task allocation bipartite graph (WTABG) for globally optimal matching to minimize platform costs under multiple constraints. Experimental results demonstrate PTA-GNNTR’s superiority in large-scale sparse-data scenarios, revealing the importance hierarchy of allocation factors (historical records <span><math><mo>&gt;</mo></math></span> virtual <span><math><mo>&gt;</mo></math></span> physical social relationships) and outperforming baselines across worker satisfaction, completion rate, and execution cost metrics, ultimately presenting a paradigm-shifting methodology that fuses GNNs with bipartite graph optimization to deliver a scalable solution for next-generation crowd sensing systems.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"272 ","pages":"Article 111675"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personalized task allocation based on graph neural networks in mobile crowd sensing\",\"authors\":\"Shuang Ding ,&nbsp;Weijie Sun ,&nbsp;Xin He ,&nbsp;Anny Li\",\"doi\":\"10.1016/j.comnet.2025.111675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Personalized Task Allocation (PTA) has emerged as a pivotal challenge in mobile crowd sensing, aiming to balance platform costs and worker satisfaction through optimized task allocation, yet facing dual critical challenges: the exponential growth of problem scale driven by technological advancements and severe data sparsity caused by limited historical allocation and privacy constraints. To address these challenges, this paper proposes PTA-GNNTR, a novel two-stage graph neural network framework where Stage 1 develops a Graph Neural Network-based Task Recommendation (GNNTR) that integrates multi-dimensional factors (historical records, social relationships, and task attributes) using graph convolutional networks, attention mechanisms, and multi-layer perceptrons to enhance feature representations and generate satisfaction-oriented pre-allocation results, while Stage 2 constructs a worker-task allocation bipartite graph (WTABG) for globally optimal matching to minimize platform costs under multiple constraints. Experimental results demonstrate PTA-GNNTR’s superiority in large-scale sparse-data scenarios, revealing the importance hierarchy of allocation factors (historical records <span><math><mo>&gt;</mo></math></span> virtual <span><math><mo>&gt;</mo></math></span> physical social relationships) and outperforming baselines across worker satisfaction, completion rate, and execution cost metrics, ultimately presenting a paradigm-shifting methodology that fuses GNNs with bipartite graph optimization to deliver a scalable solution for next-generation crowd sensing systems.</div></div>\",\"PeriodicalId\":50637,\"journal\":{\"name\":\"Computer Networks\",\"volume\":\"272 \",\"pages\":\"Article 111675\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389128625006425\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128625006425","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

个性化任务分配(PTA)已成为移动人群传感领域的关键挑战,旨在通过优化任务分配平衡平台成本和员工满意度,但面临双重关键挑战:技术进步驱动的问题规模指数级增长,以及有限的历史分配和隐私约束导致的严重数据稀疏性。为了解决这些挑战,本文提出了PTA-GNNTR,这是一种新的两阶段图神经网络框架,其中第一阶段开发了基于图神经网络的任务推荐(GNNTR),该框架使用图卷积网络、注意机制和多层感知器集成了多维因素(历史记录、社会关系和任务属性),以增强特征表示并生成面向满意度的预分配结果;第二阶段构建了一个全局最优匹配的工人-任务分配二部图(WTABG),以最小化多个约束下的平台成本。实验结果表明,PTA-GNNTR在大规模稀疏数据场景中具有优势,揭示了分配因素(历史记录、虚拟社会关系、物理社会关系)的重要性层次,并在员工满意度、完成率和执行成本指标方面优于基线,最终提出了一种范式转换方法,将gnn与二部图优化相融合,为下一代人群传感系统提供可扩展的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Personalized task allocation based on graph neural networks in mobile crowd sensing
Personalized Task Allocation (PTA) has emerged as a pivotal challenge in mobile crowd sensing, aiming to balance platform costs and worker satisfaction through optimized task allocation, yet facing dual critical challenges: the exponential growth of problem scale driven by technological advancements and severe data sparsity caused by limited historical allocation and privacy constraints. To address these challenges, this paper proposes PTA-GNNTR, a novel two-stage graph neural network framework where Stage 1 develops a Graph Neural Network-based Task Recommendation (GNNTR) that integrates multi-dimensional factors (historical records, social relationships, and task attributes) using graph convolutional networks, attention mechanisms, and multi-layer perceptrons to enhance feature representations and generate satisfaction-oriented pre-allocation results, while Stage 2 constructs a worker-task allocation bipartite graph (WTABG) for globally optimal matching to minimize platform costs under multiple constraints. Experimental results demonstrate PTA-GNNTR’s superiority in large-scale sparse-data scenarios, revealing the importance hierarchy of allocation factors (historical records > virtual > physical social relationships) and outperforming baselines across worker satisfaction, completion rate, and execution cost metrics, ultimately presenting a paradigm-shifting methodology that fuses GNNs with bipartite graph optimization to deliver a scalable solution for next-generation crowd sensing systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信