基于接触状态插值的摩擦系统非线性模态分析的非迭代方法

IF 3.2 3区 工程技术 Q2 MECHANICS
Yi Yao , Yanbin Lei , Louis Jézéquel , Xingrong Huang
{"title":"基于接触状态插值的摩擦系统非线性模态分析的非迭代方法","authors":"Yi Yao ,&nbsp;Yanbin Lei ,&nbsp;Louis Jézéquel ,&nbsp;Xingrong Huang","doi":"10.1016/j.ijnonlinmec.2025.105254","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a non-iterative approximative nonlinear mode method based on linear modes for systems frictional stick-slip interfaces under the single resonant mode assumption. The proposed method effectively captures the influence of contact states on nonlinear dynamic behavior and addresses the need for efficient predictive analysis in frictionally damped systems. The core idea is to characterize contact states via stick-slip transitions at frictionally damped systems. Nonlinear modes are constructed by interpolating between linear modes associated with piecewise contact states, ranging from fully stuck to fully slipped. Under the weakly nonlinear assumption, interpolation functions for nonlinear modal frequencies are first established for one single frictional interface, and then generalized to multiple contact interfaces. The interpolation leverages linear modes across varying contact states to construct a piecewise function describing the dependency of nonlinear modal frequencies on relative displacement amplitudes on the interface. This non-iterative formulation avoids computationally expensive iterative procedures determining nonlinear frequencies. Moreover, corresponding nonlinear mode shapes are derived using the interpolated frequencies, and damping ratios are computed via an energy-based approach. The accuracy and efficiency of the proposed framework are demonstrated through three academic and one engineering numerical case studies.</div></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"180 ","pages":"Article 105254"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A non-iterative method for nonlinear modal analysis of frictional systems using contact-state interpolation\",\"authors\":\"Yi Yao ,&nbsp;Yanbin Lei ,&nbsp;Louis Jézéquel ,&nbsp;Xingrong Huang\",\"doi\":\"10.1016/j.ijnonlinmec.2025.105254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a non-iterative approximative nonlinear mode method based on linear modes for systems frictional stick-slip interfaces under the single resonant mode assumption. The proposed method effectively captures the influence of contact states on nonlinear dynamic behavior and addresses the need for efficient predictive analysis in frictionally damped systems. The core idea is to characterize contact states via stick-slip transitions at frictionally damped systems. Nonlinear modes are constructed by interpolating between linear modes associated with piecewise contact states, ranging from fully stuck to fully slipped. Under the weakly nonlinear assumption, interpolation functions for nonlinear modal frequencies are first established for one single frictional interface, and then generalized to multiple contact interfaces. The interpolation leverages linear modes across varying contact states to construct a piecewise function describing the dependency of nonlinear modal frequencies on relative displacement amplitudes on the interface. This non-iterative formulation avoids computationally expensive iterative procedures determining nonlinear frequencies. Moreover, corresponding nonlinear mode shapes are derived using the interpolated frequencies, and damping ratios are computed via an energy-based approach. The accuracy and efficiency of the proposed framework are demonstrated through three academic and one engineering numerical case studies.</div></div>\",\"PeriodicalId\":50303,\"journal\":{\"name\":\"International Journal of Non-Linear Mechanics\",\"volume\":\"180 \",\"pages\":\"Article 105254\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Non-Linear Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020746225002422\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746225002422","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在单共振模态假设下,提出了基于线性模态的系统粘滑摩擦界面非迭代近似非线性模态方法。该方法有效地捕捉了接触状态对非线性动力学行为的影响,解决了摩擦阻尼系统中高效预测分析的需求。核心思想是通过摩擦阻尼系统的粘滑过渡来表征接触状态。非线性模态是通过插值与分段接触状态相关的线性模态来构建的,从完全粘滞到完全滑动。在弱非线性假设下,首先针对单个摩擦界面建立非线性模态频率的插值函数,然后将其推广到多个接触界面。该插值利用不同接触状态下的线性模态来构造一个分段函数,该函数描述了非线性模态频率与界面上相对位移幅值的相关性。这种非迭代公式避免了计算昂贵的迭代过程来确定非线性频率。此外,利用插值频率推导了相应的非线性模态振型,并通过基于能量的方法计算了阻尼比。通过三个学术和一个工程数值算例验证了该框架的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A non-iterative method for nonlinear modal analysis of frictional systems using contact-state interpolation
This paper presents a non-iterative approximative nonlinear mode method based on linear modes for systems frictional stick-slip interfaces under the single resonant mode assumption. The proposed method effectively captures the influence of contact states on nonlinear dynamic behavior and addresses the need for efficient predictive analysis in frictionally damped systems. The core idea is to characterize contact states via stick-slip transitions at frictionally damped systems. Nonlinear modes are constructed by interpolating between linear modes associated with piecewise contact states, ranging from fully stuck to fully slipped. Under the weakly nonlinear assumption, interpolation functions for nonlinear modal frequencies are first established for one single frictional interface, and then generalized to multiple contact interfaces. The interpolation leverages linear modes across varying contact states to construct a piecewise function describing the dependency of nonlinear modal frequencies on relative displacement amplitudes on the interface. This non-iterative formulation avoids computationally expensive iterative procedures determining nonlinear frequencies. Moreover, corresponding nonlinear mode shapes are derived using the interpolated frequencies, and damping ratios are computed via an energy-based approach. The accuracy and efficiency of the proposed framework are demonstrated through three academic and one engineering numerical case studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信