利用rsamnyi散度评估稀疏分类的拟合优度

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Raul Matsushita , Gabriel Gomes , Regina Da Fonseca , Eduardo Nakano , Roberto Vila
{"title":"利用rsamnyi散度评估稀疏分类的拟合优度","authors":"Raul Matsushita ,&nbsp;Gabriel Gomes ,&nbsp;Regina Da Fonseca ,&nbsp;Eduardo Nakano ,&nbsp;Roberto Vila","doi":"10.1016/j.jspi.2025.106350","DOIUrl":null,"url":null,"abstract":"<div><div>We present the Rényi divergence as a statistic for assessing goodness-of-fit in sparse frequency tables, where small expected counts can undermine the reliability of the traditional chi-square test. The Rényi divergence with index in (0,1) is a natural choice because it circumvents division-related issues by small frequencies. Our main result demonstrates that the Rényi statistic asymptotically follows a chi-square distribution. Through theoretical insights and Monte Carlo simulations, we evaluate the performance of the Rényi statistic across various values of the divergence index. We find that smaller index values improve the alignment of the Rényi statistic with the chi-square distribution and enhance its performance in sparse data settings. Additionally, the Rényi statistic exhibits good power properties in detecting deviations from the null hypothesis under these conditions. To illustrate its practical applicability, we present two real-world data analyses, highlighting the robustness of the Rényi divergence in scenarios involving sparse categories.</div></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"242 ","pages":"Article 106350"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing goodness-of-fit for sparse categories using Rényi divergence\",\"authors\":\"Raul Matsushita ,&nbsp;Gabriel Gomes ,&nbsp;Regina Da Fonseca ,&nbsp;Eduardo Nakano ,&nbsp;Roberto Vila\",\"doi\":\"10.1016/j.jspi.2025.106350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present the Rényi divergence as a statistic for assessing goodness-of-fit in sparse frequency tables, where small expected counts can undermine the reliability of the traditional chi-square test. The Rényi divergence with index in (0,1) is a natural choice because it circumvents division-related issues by small frequencies. Our main result demonstrates that the Rényi statistic asymptotically follows a chi-square distribution. Through theoretical insights and Monte Carlo simulations, we evaluate the performance of the Rényi statistic across various values of the divergence index. We find that smaller index values improve the alignment of the Rényi statistic with the chi-square distribution and enhance its performance in sparse data settings. Additionally, the Rényi statistic exhibits good power properties in detecting deviations from the null hypothesis under these conditions. To illustrate its practical applicability, we present two real-world data analyses, highlighting the robustness of the Rényi divergence in scenarios involving sparse categories.</div></div>\",\"PeriodicalId\":50039,\"journal\":{\"name\":\"Journal of Statistical Planning and Inference\",\"volume\":\"242 \",\"pages\":\"Article 106350\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Planning and Inference\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375825000886\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375825000886","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们将r尼散度作为稀疏频率表中评估拟合优度的统计量,其中较小的期望计数会破坏传统卡方检验的可靠性。指数为(0,1)的r nyi散度是一种自然选择,因为它通过小频率规避了与除法相关的问题。我们的主要结果表明,r逍遥统计量渐近地遵循卡方分布。通过理论分析和蒙特卡罗模拟,我们评估了rsamnyi统计在不同散度指数值上的性能。我们发现,较小的指数值改善了rsami统计量与卡方分布的一致性,并提高了其在稀疏数据设置中的性能。此外,在这些条件下,rsamnyi统计量在检测零假设偏差方面表现出良好的功率特性。为了说明它的实际适用性,我们提出了两个真实世界的数据分析,强调了在涉及稀疏类别的情况下rsamnyi分歧的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing goodness-of-fit for sparse categories using Rényi divergence
We present the Rényi divergence as a statistic for assessing goodness-of-fit in sparse frequency tables, where small expected counts can undermine the reliability of the traditional chi-square test. The Rényi divergence with index in (0,1) is a natural choice because it circumvents division-related issues by small frequencies. Our main result demonstrates that the Rényi statistic asymptotically follows a chi-square distribution. Through theoretical insights and Monte Carlo simulations, we evaluate the performance of the Rényi statistic across various values of the divergence index. We find that smaller index values improve the alignment of the Rényi statistic with the chi-square distribution and enhance its performance in sparse data settings. Additionally, the Rényi statistic exhibits good power properties in detecting deviations from the null hypothesis under these conditions. To illustrate its practical applicability, we present two real-world data analyses, highlighting the robustness of the Rényi divergence in scenarios involving sparse categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Planning and Inference
Journal of Statistical Planning and Inference 数学-统计学与概率论
CiteScore
2.10
自引率
11.10%
发文量
78
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists. We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信