发射机位置未知的无源分布式MIMO雷达系统运动目标定位

IF 3.6 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Liehu Wu , Guodong Qin , Yanbin Zou , Mingyi You , Binhui Chen , Duofang Chen
{"title":"发射机位置未知的无源分布式MIMO雷达系统运动目标定位","authors":"Liehu Wu ,&nbsp;Guodong Qin ,&nbsp;Yanbin Zou ,&nbsp;Mingyi You ,&nbsp;Binhui Chen ,&nbsp;Duofang Chen","doi":"10.1016/j.sigpro.2025.110265","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the problem of moving target localization in passive distributed multiple-input multiple-output (MIMO) radar systems with unknown transmitter positions. Using the angle of arrival (AOA), differential time delay (DTD) and differential frequency shift (DFS) measurements, an efficient localization method is proposed to jointly estimate the positions and velocities of the target and the transmitters. The proposed method provides a closed-form solution without requiring precise time synchronization or the transmission of raw signals among receivers. Theoretical analysis shows that introducing DFS measurements can improve position estimation accuracy and that increasing the number of transmitters further enhances target localization performance. Moreover, this method is proven to achieve the Cram<span><math><mover><mrow><mtext>e</mtext></mrow><mrow><mo>́</mo></mrow></mover></math></span>r–Rao lower bound (CRLB) accuracy under small error conditions. Simulation results validate the theoretical development and show that the proposed method outperforms the existing methods.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"239 ","pages":"Article 110265"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moving target localization in passive distributed MIMO radar systems with unknown transmitter positions\",\"authors\":\"Liehu Wu ,&nbsp;Guodong Qin ,&nbsp;Yanbin Zou ,&nbsp;Mingyi You ,&nbsp;Binhui Chen ,&nbsp;Duofang Chen\",\"doi\":\"10.1016/j.sigpro.2025.110265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the problem of moving target localization in passive distributed multiple-input multiple-output (MIMO) radar systems with unknown transmitter positions. Using the angle of arrival (AOA), differential time delay (DTD) and differential frequency shift (DFS) measurements, an efficient localization method is proposed to jointly estimate the positions and velocities of the target and the transmitters. The proposed method provides a closed-form solution without requiring precise time synchronization or the transmission of raw signals among receivers. Theoretical analysis shows that introducing DFS measurements can improve position estimation accuracy and that increasing the number of transmitters further enhances target localization performance. Moreover, this method is proven to achieve the Cram<span><math><mover><mrow><mtext>e</mtext></mrow><mrow><mo>́</mo></mrow></mover></math></span>r–Rao lower bound (CRLB) accuracy under small error conditions. Simulation results validate the theoretical development and show that the proposed method outperforms the existing methods.</div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"239 \",\"pages\":\"Article 110265\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168425003792\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425003792","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

研究了发射机位置未知的无源分布式多输入多输出(MIMO)雷达系统中运动目标定位问题。利用到达角(AOA)、差分时延(DTD)和差分频移(DFS)测量,提出了一种联合估计目标和发射机位置和速度的有效定位方法。该方法提供了一种封闭的解决方案,不需要精确的时间同步或在接收器之间传输原始信号。理论分析表明,引入DFS测量可以提高定位精度,增加发射机数量可以进一步提高目标定位性能。此外,该方法在小误差条件下也能达到cram - rao下界精度。仿真结果验证了理论发展,并表明该方法优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moving target localization in passive distributed MIMO radar systems with unknown transmitter positions
This paper investigates the problem of moving target localization in passive distributed multiple-input multiple-output (MIMO) radar systems with unknown transmitter positions. Using the angle of arrival (AOA), differential time delay (DTD) and differential frequency shift (DFS) measurements, an efficient localization method is proposed to jointly estimate the positions and velocities of the target and the transmitters. The proposed method provides a closed-form solution without requiring precise time synchronization or the transmission of raw signals among receivers. Theoretical analysis shows that introducing DFS measurements can improve position estimation accuracy and that increasing the number of transmitters further enhances target localization performance. Moreover, this method is proven to achieve the Cramér–Rao lower bound (CRLB) accuracy under small error conditions. Simulation results validate the theoretical development and show that the proposed method outperforms the existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信